Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 7,895 of 8,931    |
|    ScienceDaily to All    |
|    AI finds the first stars were not alone    |
|    23 Mar 23 22:30:26    |
      MSGID: 1:317/3 641d276d       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        AI finds the first stars were not alone                Date:        March 23, 2023        Source:        Kavli Institute for the Physics and Mathematics of the Universe        Summary:        Machine learning and state-of-the-art supernova nucleosynthesis        has helped researchers find that the majority of observed        second-generation stars in the universe were enriched by multiple        supernovae.                      Facebook Twitter Pinterest LinkedIN Email       FULL STORY       ==========================================================================       By using machine learning and state-of-the-art supernova       nucleosynthesis, a team of researchers have found the majority of       observed second-generation stars in the universe were enriched by multiple       supernovae, reports a new study in The Astrophysical Journal.                     ==========================================================================       Nuclear astrophysics research has shown elements including and heavier       than carbon in the universe are produced in stars. But the first stars,       stars born soon after the Big Bang, did not contain such heavy elements,       which astronomers call 'metals'. The next generation of stars contained       only a small amount of heavy elements produced by the first stars. To       understand the universe in its infancy, it requires researchers to study       these metal-poor stars.              Luckily, these second-generation metal-poor stars are observed in our       Milky Way Galaxy, and have been studied by a team of Affiliate Members       of the Kavli Institute for the Physics and Mathematics of the Universe       (Kavli IPMU) to close in on the physical properties of the first stars       in the universe.              The team, led by Kavli IPMU Visiting Associate Scientist and The       University of Tokyo Institute for Physics of Intelligence Assistant       Professor Tilman Hartwig, including Visiting Associate Scientist and       National Astronomical Observatory of Japan Assistant Professor Miho       Ishigaki, Visiting Senior Scientist and University of Hertfordshire       Professor Chiaki Kobayashi, Visiting Senior Scientist and National       Astronomical Observatory of Japan Professor Nozomu Tominaga, and Visiting       Senior Scientist and The University of Tokyo Professor Emeritus Ken'ichi       Nomoto, used artificial intelligence to analyze elemental abundances       in more than 450 extremely metal-poor stars observed to date. Based on       the newly developed supervised machine learning algorithm trained on       theoretical supernova nucleosynthesis models, they found that 68 per cent       of the observed extremely metal-poor stars have a chemical fingerprint       consistent with enrichment by multiple previous supernovae.              The team's results give the first quantitative constraint based on       observations on the multiplicity of the first stars.              "Multiplicity of the first stars were only predicted from numerical       simulations so far, and there was no way to observationally examine the       theoretical prediction until now," said lead author Hartwig. "Our result       suggests that most first stars formed in small clusters so that multiple       of their supernovae can contribute to the metal enrichment of the early       interstellar medium," he said.              "Our new algorithm provides an excellent tool to interpret the big data we       will have in the next decade from on-going and future astronomical surveys       across the world" said Kobayashi, also a Leverhulme Research Fellow.              "At the moment, the available data of old stars are the tip of the       iceberg within the solar neighborhood. The Prime Focus Spectrograph,       a cutting-edge multi-object spectrograph on the Subaru Telescope       developed by the international collaboration led by Kavli IPMU, is the       best instrument to discover ancient stars in the outer regions of the       Milky Way far beyond the solar neighborhood.," said Ishigaki.              The new algorithm invented in this study opens the door to make the most       of diverse chemical fingerprints in metal-poor stars discovered by the       Prime Focus Spectrograph.              "The theory of the first stars tells us that the first stars should be       more massive than the Sun. The natural expectation was that the first       star was born in a gas cloud containing the mass million times more than       the Sun. However, our new finding strongly suggests that the first stars       were not born alone, but instead formed as a part of a star cluster or       a binary or multiple star system.              This also means that we can expect gravitational waves from the first       binary stars soon after the Big Bang, which could be detected future       missions in space or on the Moon," said Kobayashi.               * RELATED_TOPICS        o Space_&_Time        # Stars # Astrophysics # Galaxies # Nebulae        o Matter_&_Energy        # Physics # Chemistry # Inorganic_Chemistry #        Quantum_Physics        * RELATED_TERMS        o Supernova o Nucleosynthesis o Nuclear_fusion        o Big_Bang_nucleosynthesis o Multiverse o        Galaxy_formation_and_evolution o Big_Bang o Planetary_nebula              ==========================================================================       Story Source: Materials provided by       Kavli_Institute_for_the_Physics_and_Mathematics_of_the Universe. Note:       Content may be edited for style and length.                     ==========================================================================       Related Multimedia:        * Schematic_illustration_of_the_first_star's_supernovae       ==========================================================================       Journal Reference:        1. Tilman Hartwig, Miho N. Ishigaki, Chiaki Kobayashi, Nozomu Tominaga,        Ken'ichi Nomoto. Machine Learning Detects Multiplicity of the        First Stars in Stellar Archaeology Data. The Astrophysical Journal,        2023; 946 (1): 20 DOI: 10.3847/1538-4357/acbcc6       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/03/230323103350.htm              --- up 1 year, 3 weeks, 3 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 226/30 227/114 229/110       SEEN-BY: 229/111 112 113 307 317 400 426 428 470 664 700 292/854 298/25       SEEN-BY: 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca