Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 7,876 of 8,931    |
|    ScienceDaily to All    |
|    Batteries: Passivation layer mystery sol    |
|    21 Mar 23 22:30:26    |
      MSGID: 1:317/3 641a8474       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Batteries: Passivation layer mystery solved         Researchers characterized chemical processes at the electrodes of       lithium-ion batteries                Date:        March 21, 2023        Source:        Karlsruher Institut fu"r Technologie (KIT)        Summary:        In our daily lives, lithium-ion batteries have become        indispensable. They function only because of a passivation layer        that forms during their initial cycle. As researchers found out        via simulations, this solid electrolyte interphase develops not        directly at the electrode but aggregates in the solution. Their        findings allow the optimization of the performance and lifetime        of future batteries.                      Facebook Twitter Pinterest LinkedIN Email       FULL STORY       ==========================================================================       In our daily lives, lithium-ion batteries have become indispensable. They       function only because of a passivation layer that forms during their       initial cycle. As researchers at Karlsruhe Institute of Technology (KIT)       found out via simulations, this solid electrolyte interphase develops not       directly at the electrode but aggregates in the solution. The scientists       report on their study in the Advanced Energy Materials journal. Their       findings allow the optimization of the performance and lifetime of       future batteries.                     ==========================================================================       From smartphones to electric cars -- wherever a mobile energy source       is required, it is almost always a lithium-ion battery that does the       job. An essential part of the reliable function of this and other       liquid electrolyte batteries is the solid electrolyte interphase       (SEI). This passivation layer forms when voltage is applied for the first       time. The electrolyte is being decomposed in the immediate vicinity       of the surface. Until now, it remained unclear ow the particles in       the electrolytes form a layer that is up to 100 nanometers thick on       the surface of the electrode since the decomposition reaction is only       possible in a few nanometers distance from the surface.              The passivation layer on the anode surface is crucial to the       electrochemical capacity and lifetime of a lithium-ion battery because       it is highly stressed with every charging cycle. When the SEI is       broken up during this process, the electrolyte is further decomposed       and the battery's capacity is reduced -- a process that determines the       lifetime of a battery. With the right knowledge on the SEI's growth and       composition, the properties of a battery can be controlled. But so far,       no experimental or computer-aided approach was sufficient to decipher       the SEI's complex growth processes that take place on a very wide scale       and in different dimensions.              Study as Part of the EU Initiative BATTERY 2030+ Researchers at the       KIT Institute of Nanotechnology (INT) now managed to characterize the       formation of the SEI with a multi-scale approach. "This solves one of       the great mysteries regarding an essential part of all liquid electrolyte       batteries -- especially the lithium-ion batteries we all use every day,"       says Professor Wolfgang Wenzel, director of the research group "Multiscale       Materials Modelling and Virtual Design" at INT, which is involved in       the large-scale European research initiative BATTERY 2030+ that aims       to develop safe, affordable, long-lasting, sustainable high-performance       batteries for the future. The KIT researchers report on their findings       in the journal Advanced Energy Materials.              More than 50,000 Simulations for Different Reaction Conditions To examine       the growth and composition of the passivation layer at the anode of liquid       electrolyte batteries, the researchers at INT generated an ensemble of       over 50,000 simulations representing different reaction conditions. They       found that the growth of the organic SEI follows a solution-mediated       pathway: First, SEI precursors that are formed directly at the surface       join far away from the electrode surface via a nucleation process. The       subsequent rapid growth of the nuclei leads to the formation of a porous       layer that eventually covers the electrode surface. These findings       offer a solution to the paradoxical situation that SEI constituents can       form only near the surface, where electrons are available, but their       growth would stop once this narrow region is covered. "We were able       to identify the key reaction parameters that determine SEI thickness,"       explains Dr. Saibal Jana, postdoc at INT and one of the authors of the       study. "This will enable the future development of electrolytes and       suitable additives that control the properties of the SEI and optimize       the battery's performance and lifetime." (or)        * RELATED_TOPICS        o Matter_&_Energy        # Batteries # Fuel_Cells # Nature_of_Water #        Energy_and_Resources        o Computers_&_Math        # Computer_Modeling # Neural_Interfaces #        Distributed_Computing # Mobile_Computing        * RELATED_TERMS        o Lithium o Acid o Battery_(electricity) o Chlorine o Cadmium        o Computer_simulation o Alternative_fuel_vehicle o Solubility              ==========================================================================       Story Source: Materials provided by       Karlsruher_Institut_fu"r_Technologie_(KIT). Note: Content may be edited       for style and length.                     ==========================================================================       Journal Reference:        1. Meysam Esmaeilpour, Saibal Jana, Hongjiao Li, Mohammad        Soleymanibrojeni,        Wolfgang Wenzel. A Solution‐Mediated Pathway for the        Growth of the Solid Electrolyte Interphase in Lithium‐Ion        Batteries. Advanced Energy Materials, 2023; 2203966 DOI:        10.1002/aenm.202203966       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/03/230321112637.htm              --- up 1 year, 3 weeks, 1 day, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 226/30 227/114 229/110       SEEN-BY: 229/111 112 113 307 317 400 426 428 470 664 700 292/854 298/25       SEEN-BY: 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca