home bbs files messages ]

Just a sample of the Echomail archive

Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.

   EARTH      Uhh, that 3rd rock from the sun?      8,931 messages   

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]

   Message 7,876 of 8,931   
   ScienceDaily to All   
   Batteries: Passivation layer mystery sol   
   21 Mar 23 22:30:26   
   
   MSGID: 1:317/3 641a8474   
   PID: hpt/lnx 1.9.0-cur 2019-01-08   
   TID: hpt/lnx 1.9.0-cur 2019-01-08   
    Batteries: Passivation layer mystery solved    
    Researchers characterized chemical processes at the electrodes of   
   lithium-ion batteries    
      
     Date:   
         March 21, 2023   
     Source:   
         Karlsruher Institut fu"r Technologie (KIT)   
     Summary:   
         In our daily lives, lithium-ion batteries have become   
         indispensable. They function only because of a passivation layer   
         that forms during their initial cycle. As researchers found out   
         via simulations, this solid electrolyte interphase develops not   
         directly at the electrode but aggregates in the solution. Their   
         findings allow the optimization of the performance and lifetime   
         of future batteries.   
      
      
         Facebook Twitter Pinterest LinkedIN Email   
   FULL STORY   
   ==========================================================================   
   In our daily lives, lithium-ion batteries have become indispensable. They   
   function only because of a passivation layer that forms during their   
   initial cycle. As researchers at Karlsruhe Institute of Technology (KIT)   
   found out via simulations, this solid electrolyte interphase develops not   
   directly at the electrode but aggregates in the solution. The scientists   
   report on their study in the Advanced Energy Materials journal. Their   
   findings allow the optimization of the performance and lifetime of   
   future batteries.   
      
      
   ==========================================================================   
   From smartphones to electric cars -- wherever a mobile energy source   
   is required, it is almost always a lithium-ion battery that does the   
   job. An essential part of the reliable function of this and other   
   liquid electrolyte batteries is the solid electrolyte interphase   
   (SEI). This passivation layer forms when voltage is applied for the first   
   time. The electrolyte is being decomposed in the immediate vicinity   
   of the surface. Until now, it remained unclear ow the particles in   
   the electrolytes form a layer that is up to 100 nanometers thick on   
   the surface of the electrode since the decomposition reaction is only   
   possible in a few nanometers distance from the surface.   
      
   The passivation layer on the anode surface is crucial to the   
   electrochemical capacity and lifetime of a lithium-ion battery because   
   it is highly stressed with every charging cycle. When the SEI is   
   broken up during this process, the electrolyte is further decomposed   
   and the battery's capacity is reduced -- a process that determines the   
   lifetime of a battery. With the right knowledge on the SEI's growth and   
   composition, the properties of a battery can be controlled. But so far,   
   no experimental or computer-aided approach was sufficient to decipher   
   the SEI's complex growth processes that take place on a very wide scale   
   and in different dimensions.   
      
   Study as Part of the EU Initiative BATTERY 2030+ Researchers at the   
   KIT Institute of Nanotechnology (INT) now managed to characterize the   
   formation of the SEI with a multi-scale approach. "This solves one of   
   the great mysteries regarding an essential part of all liquid electrolyte   
   batteries -- especially the lithium-ion batteries we all use every day,"   
   says Professor Wolfgang Wenzel, director of the research group "Multiscale   
   Materials Modelling and Virtual Design" at INT, which is involved in   
   the large-scale European research initiative BATTERY 2030+ that aims   
   to develop safe, affordable, long-lasting, sustainable high-performance   
   batteries for the future. The KIT researchers report on their findings   
   in the journal Advanced Energy Materials.   
      
   More than 50,000 Simulations for Different Reaction Conditions To examine   
   the growth and composition of the passivation layer at the anode of liquid   
   electrolyte batteries, the researchers at INT generated an ensemble of   
   over 50,000 simulations representing different reaction conditions. They   
   found that the growth of the organic SEI follows a solution-mediated   
   pathway: First, SEI precursors that are formed directly at the surface   
   join far away from the electrode surface via a nucleation process. The   
   subsequent rapid growth of the nuclei leads to the formation of a porous   
   layer that eventually covers the electrode surface. These findings   
   offer a solution to the paradoxical situation that SEI constituents can   
   form only near the surface, where electrons are available, but their   
   growth would stop once this narrow region is covered. "We were able   
   to identify the key reaction parameters that determine SEI thickness,"   
   explains Dr. Saibal Jana, postdoc at INT and one of the authors of the   
   study. "This will enable the future development of electrolytes and   
   suitable additives that control the properties of the SEI and optimize   
   the battery's performance and lifetime." (or)   
       * RELATED_TOPICS   
             o Matter_&_Energy   
                   # Batteries # Fuel_Cells # Nature_of_Water #   
                   Energy_and_Resources   
             o Computers_&_Math   
                   # Computer_Modeling # Neural_Interfaces #   
                   Distributed_Computing # Mobile_Computing   
       * RELATED_TERMS   
             o Lithium o Acid o Battery_(electricity) o Chlorine o Cadmium   
             o Computer_simulation o Alternative_fuel_vehicle o Solubility   
      
   ==========================================================================   
   Story Source: Materials provided by   
   Karlsruher_Institut_fu"r_Technologie_(KIT). Note: Content may be edited   
   for style and length.   
      
      
   ==========================================================================   
   Journal Reference:   
      1. Meysam Esmaeilpour, Saibal Jana, Hongjiao Li, Mohammad   
      Soleymanibrojeni,   
         Wolfgang Wenzel. A Solution‐Mediated Pathway for the   
         Growth of the Solid Electrolyte Interphase in Lithium‐Ion   
         Batteries. Advanced Energy Materials, 2023; 2203966 DOI:   
         10.1002/aenm.202203966   
   ==========================================================================   
      
   Link to news story:   
   https://www.sciencedaily.com/releases/2023/03/230321112637.htm   
      
   --- up 1 year, 3 weeks, 1 day, 10 hours, 50 minutes   
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)   
   SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 226/30 227/114 229/110   
   SEEN-BY: 229/111 112 113 307 317 400 426 428 470 664 700 292/854 298/25   
   SEEN-BY: 305/3 317/3 320/219 396/45   
   PATH: 317/3 229/426   
      

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]


(c) 1994,  bbs@darkrealms.ca