Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 7,795 of 8,931    |
|    ScienceDaily to All    |
|    High-speed super-resolution microscopy v    |
|    10 Mar 23 21:30:28    |
      MSGID: 1:317/3 640c03ec       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        High-speed super-resolution microscopy via temporal compression         New high-speed super-resolution imaging technique resolves a longstanding       contradiction between spatial resolution and imaging speed                Date:        March 10, 2023        Source:        SPIE--International Society for Optics and Photonics        Summary:        Recently, a research team resolved the contradiction between        spatial resolution and imaging speed in optical microscopy. They        achieved high- speed super-resolution by developing an effective        technique termed temporal compressive super-resolution microscopy        (TCSRM). TCSRM merges enhanced temporal compressive microscopy with        deep-learning-based super- resolution image reconstruction. Enhanced        temporal compressive microscopy improves the imaging speed        by reconstructing multiple images from one compressed image,        and the deep-learning-based image reconstruction achieves the        super-resolution effect without reduction in imaging speed.               Their iterative image reconstruction algorithm contains        motion estimation, merging estimation, scene correction, and        super-resolution processing to extract the super-resolution image        sequence from compressed and reference measurements.                      Facebook Twitter Pinterest LinkedIN Email       FULL STORY       ==========================================================================       As an indispensable tool for observing the microcosmos, optical       microscopy has boosted the development of various fields, including       biology, medicine, physics, and materials. However, optical diffraction       imposes a spatial resolution restriction on optical microscopy, which       hampers exploration of finer structures.                     ==========================================================================       To overcome the resolution limitation, various super-resolution microscopy       techniques based on diverse principles have been proposed. Yet these       techniques commonly acquire super-resolution at the expense of reduced       imaging speed, so achieving high-speed super-resolution imaging that can       detect fast dynamics with fine structures has remained a great challenge.              Recently, a research team from East China Normal University, Shenzhen       University, and Peking University resolved the contradiction between the       spatial resolution and imaging speed. As reported in Advanced Photonics,       they achieved high-speed super-resolution by developing an effective       technique termed temporal compressive super-resolution microscopy       (TCSRM). TCSRM merges enhanced temporal compressive microscopy with       deep-learning-based super- resolution image reconstruction. Enhanced       temporal compressive microscopy improves the imaging speed by       reconstructing multiple images from one compressed image, and the       deep-learning-based image reconstruction achieves the super-resolution       effect without reduction in imaging speed. Their iterative image       reconstruction algorithm contains motion estimation, merging estimation,       scene correction, and super-resolution processing to extract the super-       resolution image sequence from compressed and reference measurements.              Their studies verified the high-speed super-resolution imaging ability of       TCSRM in theory and experiment. To demonstrate the imaging capability of       TCSRM, they imaged flowing fluorescent beads in a microchannel, achieving       a remarkable frame rate of 1200 frames per second and spatial resolution       of 100 nm.              According to corresponding author Shian Zhang, Professor and Deputy       Director of the State Key Laboratory of Precision Spectroscopy at East       China Normal University, "This work provides a powerful tool for the       observation of high- speed dynamics of fine structures, especially       in hydromechanics and biomedical fields, such as microflow velocity       measurement, organelle interactions, intracellular transports and neural       dynamics." Zhang adds, "The framework of TCSRM can also offer guidance       for achieving higher imaging speed and spatial resolution in holography,       coherent diffraction imaging, and fringe projection profilometry."        * RELATED_TOPICS        o Matter_&_Energy        # Optics # Medical_Technology # Ultrasound # Biochemistry        # Spintronics # Graphene # Energy_and_Resources #        Albert_Einstein        * RELATED_TERMS        o Confocal_laser_scanning_microscopy o        Scanning_electron_microscope o Conflict_resolution o        Electron_microscope o Positron_emission_tomography o CAT_scan        o Radiography o Speed_of_sound              ==========================================================================       Story Source: Materials provided by       SPIE--International_Society_for_Optics_and_Photonics.              Note: Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Yilin He, Yunhua Yao, Dalong Qi, Yu He, Zhengqi Huang, Pengpeng        Ding,        Chengzhi Jin, Chonglei Zhang, Lianzhong Deng, Kebin Shi,        Zhenrong Sun, Xiaocong Yuan, Shian Zhang. Temporal compressive        super-resolution microscopy at frame rate of 1200 frames per second        and spatial resolution of 100 nm. Advanced Photonics, 2023; 5 (02)        DOI: 10.1117/1.AP.5.2.026003       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/03/230310123927.htm              --- up 1 year, 1 week, 4 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 226/30 227/114 229/110       SEEN-BY: 229/111 112 113 307 317 400 426 428 470 664 700 292/854 298/25       SEEN-BY: 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca