Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 7,788 of 8,931    |
|    ScienceDaily to All    |
|    Electrocatalysis under the atomic force     |
|    09 Mar 23 21:30:28    |
      MSGID: 1:317/3 640ab275       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Electrocatalysis under the atomic force microscope                Date:        March 9, 2023        Source:        Helmholtz-Zentrum Berlin fu"r Materialien und Energie        Summary:        A further development in atomic force microscopy now makes        it possible to simultaneously image the height profile of        nanometer-fine structures as well as the electric current and the        frictional force at solid-liquid interfaces. A team has succeeded        in analyzing electrocatalytically active materials and gaining        insights that will help optimize catalysts. The method is also        potentially suitable for studying processes on battery electrodes,        in photocatalysis or on active biomaterials.                      Facebook Twitter Pinterest LinkedIN Email       FULL STORY       ==========================================================================       A further development in atomic force microscopy now makes it possible to       simultaneously image the height profile of nanometre-fine structures as       well as the electric current and the frictional force at solid-liquid       interfaces. A team from the Helmholtz-Zentrum Berlin (HZB) and the       Fritz Haber Institute (FHI) of the Max Planck Society has succeeded in       analysing electrocatalytically active materials and gaining insights that       will help optimise catalysts. The method is also potentially suitable       for studying processes on battery electrodes, in photocatalysis or on       active biomaterials.                     ==========================================================================       To manage the energy transition, it will also be important to       rapidly develop cheap and efficient materials that can be used to       split water or CO2 by electrocatalysis. In this process, part of the       electrical energy is stored in the chemical reaction products. The       efficiency of such electrocatalysts depends largely on the nature of       the electrode-electrolyte interfaces, i.e. the interfaces between the       solid electrodes and the typically aqueous electrolyte.              However, spatially resolved physical studies of such solid-liquid       interfaces are still relatively scarce.              More insights with AFM Dr Christopher S. Kley and his team have now       developed a new approach to correlative atomic force microscopy       (AFM). An extremely sharp tip is scanned across the surface and       its height profile is recorded. By attaching the tip to the end of a       miniaturised cantilever, the force interactions between the tip and the       sample surface, including frictional forces, can be measured with high       sensitivity. In addition, the electrical current flowing through the       mechanical contact can be measured, provided a voltage is applied. "This       allowed us to simultaneously determine the electrical conductivity, the       mechanical-chemical friction and the morphological properties in situ       (i.e. under the relevant liquid-phase conditions rather than in vacuum       or in air)," emphasises Kley.              Copper-gold electrocatalyst Using this method, the scientists now       studied a nanostructured and bimetallic copper-gold electrocatalyst,       in collaboration with Prof. Beatriz Rolda'n Cuenya from the       Fritz-Haber-Institute (FHI). Among others, such materials are used in       the electrocatalytic conversion of CO2 into energy carriers. "We were       able to clearly identify islands of copper oxide with higher electrical       resistance, but also grain boundaries and low-conductivity regions in       the hydration layer where the catalyst surface comes into contact with       the aqueous electrolyte," says Dr Martin Munz, first author of the study.              Such results on catalyst-electrolyte interfaces help to optimise them       in a targeted manner. "We can now observe how local electrochemical       environments influence charge transfer at the interface," says Kley.              Focus on solid-liquid interfaces "However, our results are also of general       interest to energy research, especially for the study of electrochemical       conversion processes, which also play a role in battery systems." Insights       into solid-liquid interfaces can also be useful in completely different       areas of research, such as understanding corrosion processes, nanosensor       systems, and possibly addressing scientific queries in fluidics and       environmental sciences, such as dissolution or deposition processes on       metal surfaces exposed to water.              This work was carried out within the framework of the CatLab project,       where researchers from the HZB and the FHI of the MPG are working       together, to develop thin-film catalysts for the energy transition.               * RELATED_TOPICS        o Matter_&_Energy        # Energy_Technology # Energy_and_Resources #        Fuel_Cells # Nature_of_Water # Spintronics # Graphene #        Materials_Science # Physics        * RELATED_TERMS        o Friction o Battery_electric_vehicle o Ampere o        Potential_energy o Torque o Energy o Propellant o Magnetic_field              ==========================================================================       Story Source: Materials provided by       Helmholtz-Zentrum_Berlin_fu"r_Materialien_und_Energie.              Note: Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Martin Munz, Jeffrey Poon, Wiebke Frandsen, Beatriz Roldan Cuenya,        Christopher S. Kley. Nanoscale Electron Transfer Variations        at Electrocatalyst-Electrolyte Interfaces Resolved by in Situ        Conductive Atomic Force Microscopy. Journal of the American Chemical        Society, 2023; 145 (9): 5242 DOI: 10.1021/jacs.2c12617       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/03/230309124941.htm              --- up 1 year, 1 week, 3 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 226/30 227/114 229/110       SEEN-BY: 229/111 112 113 307 317 400 426 428 470 664 700 292/854 298/25       SEEN-BY: 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca