home bbs files messages ]

Just a sample of the Echomail archive

Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.

   EARTH      Uhh, that 3rd rock from the sun?      8,931 messages   

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]

   Message 7,776 of 8,931   
   ScienceDaily to All   
   Researchers take a step towards turning    
   08 Mar 23 21:30:44   
   
   MSGID: 1:317/3 640960fc   
   PID: hpt/lnx 1.9.0-cur 2019-01-08   
   TID: hpt/lnx 1.9.0-cur 2019-01-08   
    Researchers take a step towards turning interactions that normally ruin   
   quantum information into a way of protecting it    
    A new method for predicting the behavior of quantum devices provides a   
   crucial tool for real-world applications of quantum technology    
      
     Date:   
         March 8, 2023   
     Source:   
         Aalto University   
     Summary:   
         A new method for predicting the behavior of quantum devices provides   
         a crucial tool for real-world applications of quantum technology.   
      
      
         Facebook Twitter Pinterest LinkedIN Email   
   FULL STORY   
   ==========================================================================   
   Researchers have found a way to predict the behavior of many-body quantum   
   systems coupled to their environment. The work represents a way to protect   
   quantum information in quantum devices, which is crucial for real-world   
   applications of quantum technology.   
      
      
   ==========================================================================   
   In a study published in Physical Review Letters, researchers at Aalto   
   University in Finland and IAS Tsinghua University in China report a   
   new way to predict how quantum systems, such as groups of particles,   
   behave when they are connected to the external environment. Usually,   
   connecting a system such as a quantum computer to its environment creates   
   decoherence and leaks, which ruin any information about what's happening   
   inside the system. Now, the researchers developed a technique which   
   turns that problem into its a solution.   
      
   The research was carried out by Aalto doctoral researcher Guangze Chen   
   under the supervision of Professor Jose Lado and in collaboration with   
   Fei Song from IAS Tsinghua. Their approach combines techniques from two   
   domains, quantum many-body physics and non-Hermitian quantum physics.   
      
   Protection from decoherence and leaks One of the most intriguing   
   and powerful phenomena in quantum systems is many- body quantum   
   correlations. Understanding these and predicting their behaviour is   
   vital because they underpin the exotic properties of key components of   
   quantum computers and quantum sensors. While a lot of progress has been   
   made in predicting quantum correlations when matter is isolated from its   
   environment, doing so when matter is coupled to its environment has so   
   far eluded scientists.   
      
   In the new study, the team showed that connecting a quantum device to   
   an external system can be a strength in the right circumstances. When a   
   quantum device is host to so-called non-Hermitian topology, it leads to   
   robustly protected quantum excitations whose resilience stems from the   
   very fact that they are open to the environment. These kinds of open   
   quantum systems can potentially lead to disruptive new strategies for   
   quantum technologies that harness external coupling to protect information   
   from decoherence and leaks.   
      
   From idealised conditions to the real world The study establishes a   
   new theoretical method to calculate the correlations between quantum   
   particles when they are coupled to their environment. 'The method we   
   developed allows us to solve correlated quantum problems that present   
   dissipation and quantum many-body interactions simultaneously. As a   
   proof of concept, we demonstrated the methodology for systems with 24   
   interacting qubits featuring topological excitations,' says Chen.   
      
   Professor Lado explains that their approach will help move quantum   
   research from idealised conditions to real-world applications. 'Predicting   
   the behavior of correlated quantum matter is one of the critical problems   
   for the theoretical design of quantum materials and devices. However,   
   the difficulty of this problem becomes much greater when considering   
   realistic situations in which quantum systems are coupled to an external   
   environment. Our results represent a step forward in solving this problem,   
   providing a methodology for understanding and predicting both quantum   
   materials and devices in realistic conditions in quantum technologies,'   
   he says.   
      
       * RELATED_TOPICS   
             o Matter_&_Energy   
                   # Quantum_Physics # Quantum_Computing # Physics #   
                   Spintronics   
             o Computers_&_Math   
                   # Quantum_Computers # Computers_and_Internet #   
                   Spintronics_Research # Encryption   
       * RELATED_TERMS   
             o Quantum_entanglement o Quantum_number o Quantum_tunnelling   
             o Virtual_reality o Quantum_dot o Linus_Pauling o   
             Bose-Einstein_condensate o Quantum_computer   
      
   ==========================================================================   
   Story Source: Materials provided by Aalto_University. Note: Content may   
   be edited for style and length.   
      
      
   ==========================================================================   
   Journal Reference:   
      1. Guangze Chen, Fei Song, Jose L. Lado. Topological Spin Excitations   
      in   
         Non-Hermitian Spin Chains with a Generalized Kernel Polynomial   
         Algorithm.   
      
         Physical Review Letters, 2023; 130 (10) DOI: 10.1103/   
         PhysRevLett.130.100401   
   ==========================================================================   
      
   Link to news story:   
   https://www.sciencedaily.com/releases/2023/03/230308112210.htm   
      
   --- up 1 year, 1 week, 2 days, 10 hours, 51 minutes   
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)   
   SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 226/30 227/114 229/111   
   SEEN-BY: 229/112 113 307 317 400 426 428 470 664 700 292/854 298/25   
   SEEN-BY: 305/3 317/3 320/219 396/45   
   PATH: 317/3 229/426   
      

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]


(c) 1994,  bbs@darkrealms.ca