Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 7,776 of 8,931    |
|    ScienceDaily to All    |
|    Researchers take a step towards turning     |
|    08 Mar 23 21:30:44    |
      MSGID: 1:317/3 640960fc       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Researchers take a step towards turning interactions that normally ruin       quantum information into a way of protecting it         A new method for predicting the behavior of quantum devices provides a       crucial tool for real-world applications of quantum technology                Date:        March 8, 2023        Source:        Aalto University        Summary:        A new method for predicting the behavior of quantum devices provides        a crucial tool for real-world applications of quantum technology.                      Facebook Twitter Pinterest LinkedIN Email       FULL STORY       ==========================================================================       Researchers have found a way to predict the behavior of many-body quantum       systems coupled to their environment. The work represents a way to protect       quantum information in quantum devices, which is crucial for real-world       applications of quantum technology.                     ==========================================================================       In a study published in Physical Review Letters, researchers at Aalto       University in Finland and IAS Tsinghua University in China report a       new way to predict how quantum systems, such as groups of particles,       behave when they are connected to the external environment. Usually,       connecting a system such as a quantum computer to its environment creates       decoherence and leaks, which ruin any information about what's happening       inside the system. Now, the researchers developed a technique which       turns that problem into its a solution.              The research was carried out by Aalto doctoral researcher Guangze Chen       under the supervision of Professor Jose Lado and in collaboration with       Fei Song from IAS Tsinghua. Their approach combines techniques from two       domains, quantum many-body physics and non-Hermitian quantum physics.              Protection from decoherence and leaks One of the most intriguing       and powerful phenomena in quantum systems is many- body quantum       correlations. Understanding these and predicting their behaviour is       vital because they underpin the exotic properties of key components of       quantum computers and quantum sensors. While a lot of progress has been       made in predicting quantum correlations when matter is isolated from its       environment, doing so when matter is coupled to its environment has so       far eluded scientists.              In the new study, the team showed that connecting a quantum device to       an external system can be a strength in the right circumstances. When a       quantum device is host to so-called non-Hermitian topology, it leads to       robustly protected quantum excitations whose resilience stems from the       very fact that they are open to the environment. These kinds of open       quantum systems can potentially lead to disruptive new strategies for       quantum technologies that harness external coupling to protect information       from decoherence and leaks.              From idealised conditions to the real world The study establishes a       new theoretical method to calculate the correlations between quantum       particles when they are coupled to their environment. 'The method we       developed allows us to solve correlated quantum problems that present       dissipation and quantum many-body interactions simultaneously. As a       proof of concept, we demonstrated the methodology for systems with 24       interacting qubits featuring topological excitations,' says Chen.              Professor Lado explains that their approach will help move quantum       research from idealised conditions to real-world applications. 'Predicting       the behavior of correlated quantum matter is one of the critical problems       for the theoretical design of quantum materials and devices. However,       the difficulty of this problem becomes much greater when considering       realistic situations in which quantum systems are coupled to an external       environment. Our results represent a step forward in solving this problem,       providing a methodology for understanding and predicting both quantum       materials and devices in realistic conditions in quantum technologies,'       he says.               * RELATED_TOPICS        o Matter_&_Energy        # Quantum_Physics # Quantum_Computing # Physics #        Spintronics        o Computers_&_Math        # Quantum_Computers # Computers_and_Internet #        Spintronics_Research # Encryption        * RELATED_TERMS        o Quantum_entanglement o Quantum_number o Quantum_tunnelling        o Virtual_reality o Quantum_dot o Linus_Pauling o        Bose-Einstein_condensate o Quantum_computer              ==========================================================================       Story Source: Materials provided by Aalto_University. Note: Content may       be edited for style and length.                     ==========================================================================       Journal Reference:        1. Guangze Chen, Fei Song, Jose L. Lado. Topological Spin Excitations        in        Non-Hermitian Spin Chains with a Generalized Kernel Polynomial        Algorithm.               Physical Review Letters, 2023; 130 (10) DOI: 10.1103/        PhysRevLett.130.100401       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/03/230308112210.htm              --- up 1 year, 1 week, 2 days, 10 hours, 51 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 226/30 227/114 229/111       SEEN-BY: 229/112 113 307 317 400 426 428 470 664 700 292/854 298/25       SEEN-BY: 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca