Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 7,758 of 8,931    |
|    ScienceDaily to All    |
|    Graphene quantum dots show promise as no    |
|    06 Mar 23 21:30:30    |
      MSGID: 1:317/3 6406bdfa       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Graphene quantum dots show promise as novel magnetic field sensors        Physicists found that speeding electrons trapped in circular loops in       graphene quantum dots are highly sensitive to external magnetic fields                Date:        March 6, 2023        Source:        University of California - Santa Cruz        Summary:        Trapped electrons traveling in circular loops at extreme speeds        inside graphene quantum dots are highly sensitive to external        magnetic fields and could be used as novel magnetic field sensors        with unique capabilities, according to a new study.                      Facebook Twitter Pinterest LinkedIN Email       FULL STORY       ==========================================================================       Trapped electrons traveling in circular loops at extreme speeds inside       graphene quantum dots are highly sensitive to external magnetic fields and       could be used as novel magnetic field sensors with unique capabilities,       according to a new study.                     ==========================================================================       Electrons in graphene (an atomically thin form of carbon) behave as       if they were massless, like photons, which are massless particles of       light. Although graphene electrons do not move at the speed of light,       they exhibit the same energy-momentum relationship as photons and can       be described as "ultra- relativistic." When these electrons are confined       in a quantum dot, they travel at high velocity in circular loops around       the edge of the dot.              "These current loops create magnetic moments that are very sensitive       to external magnetic fields," explained Jairo Velasco Jr., associate       professor of physics at UC Santa Cruz. "The sensitivity of these current       loops stems from the fact that graphene electrons are ultra-relativistic       and travel at high velocity." Velasco is a corresponding author of a       paper on the new findings, published March 6 in Nature Nanotechnology. His       group at UC Santa Cruz used a scanning tunneling microscope (STM) to       create the quantum dots in graphene and study their properties. His       collaborators on the project include scientists at the University of       Manchester, U.K., and the National Institute for Materials Science       in Japan.              "This was highly collaborative work," Velasco said. "We did the       measurements in my lab at UCSC, and then we worked very closely with       theoretical physicists at the University of Manchester to understand       and interpret our data." The unique optical and electrical properties       of quantum dots -- which are often made of semiconductor nanocrystals --       are due to electrons being confined within a nanoscale structure such that       their behavior is governed by quantum mechanics. Because the resulting       electronic structure is like that of atoms, quantum dots are often called       "artificial atoms." Velasco's approach creates quantum dots in different       forms of graphene using an electrostatic "corral" to confine graphene's       speeding electrons.              "Part of what makes this interesting is the fundamental physics       of this system and the opportunity to study atomic physics in the       ultra-relativistic regime," he said. "At the same time, there are       interesting potential applications for this as a new type of quantum       sensor that can detect magnetic fields at the nano scale with high       spatial resolution." Additional applications are also possible,       according to co-first author Zhehao Ge, a UCSC graduate student in       physics. "The findings in our work also indicate that graphene quantum       dots can potentially host a giant persistent current (a perpetual       electric current without the need of an external power source) in a       small magnetic field," Ge said. "Such current can potentially be used       for quantum simulation and quantum computation." The study looked at       quantum dots in both monolayer graphene and twisted bilayer graphene. The       graphene rests on an insulating layer of hexagonal boron nitride, and       a voltage applied with the STM tip creates charges in the boron nitride       that serve to electrostatically confine electrons in the graphene.              Although Velasco's lab uses STM to create and study graphene quantum dots,       a simpler system using metal electrodes in a cross-bar array could be       used in a magnetic sensor device. Because graphene is highly flexible,       the sensor could be integrated with flexible substrates to enable magnetic       field sensing of curved objects.              "You could have many quantum dots in an array, and this could be used       to measure magnetic fields in living organisms, or to understand how the       magnetic field is distributed in a material or a device," Velasco said.              The co-first authors of the paper are Zhehao Ge, a graduate student       in Velasco's lab at UCSC, and Sergey Slizovskiy at the University of       Manchester.              Vladimir Fal'ko at the University of Manchester is a corresponding author,       and the other coauthors include Peter Polizogopoulos, Toyanath Joshi,       and David Lederman at UC Santa Cruz, and Takashi Taniguchi and Kenji       Watanabe at the National Institute for Materials Science in Japan. This       work was supported in part by the National Science Foundation and the       Army Research Office.               * RELATED_TOPICS        o Matter_&_Energy        # Spintronics # Graphene # Physics # Quantum_Physics #        Quantum_Computing # Materials_Science # Medical_Technology        # Engineering_and_Construction        * RELATED_TERMS        o Particle_accelerator o Quantum_dot o        Magnetic_resonance_imaging o Magnetic_field o Radiant_energy        o Transformer o Quantum_number o Lewis_structure_in_chemistry              ==========================================================================       Story Source: Materials provided by       University_of_California_-_Santa_Cruz. Original written by Tim       Stephens. Note: Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Zhehao Ge, Sergey Slizovskiy, Peter Polizogopoulos, Toyanath Joshi,        Takashi Taniguchi, Kenji Watanabe, David Lederman,        Vladimir I. Fal'ko, Jairo Velasco. Giant orbital magnetic        moments and paramagnetic shift in artificial relativistic        atoms and molecules. Nature Nanotechnology, 2023; DOI:        10.1038/s41565-023-01327-0       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/03/230306143430.htm              --- up 1 year, 1 week, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 226/30 227/114 229/111       SEEN-BY: 229/112 113 307 317 400 426 428 470 664 700 292/854 298/25       SEEN-BY: 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca