home bbs files messages ]

Just a sample of the Echomail archive

Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.

   EARTH      Uhh, that 3rd rock from the sun?      8,931 messages   

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]

   Message 7,753 of 8,931   
   ScienceDaily to All   
   Microscopic chalk discs in oceans play a   
   06 Mar 23 21:30:30   
   
   MSGID: 1:317/3 6406bdeb   
   PID: hpt/lnx 1.9.0-cur 2019-01-08   
   TID: hpt/lnx 1.9.0-cur 2019-01-08   
    Microscopic chalk discs in oceans play a key role in earth's carbon   
   cycle by propagating viruses    
    Rutgers-led research finds biomineral structures formed by marine algae   
   foment viral infection, contributing positively to capture CO2    
      
     Date:   
         March 6, 2023   
     Source:   
         Rutgers University   
     Summary:   
         A team of scientists studying virus-host interactions of a   
         globally abundant, armor-plated marine algae, Emiliania huxleyi,   
         has found that the circular, chalk plates the algae produce can   
         act as catalysts for viral infection, which has vast consequences   
         for trillions of microscopic oceanic creatures and the global   
         carbon cycle.   
      
      
         Facebook Twitter Pinterest LinkedIN Email   
   FULL STORY   
   ==========================================================================   
   A Rutgers-led team of scientists studying virus-host interactions of   
   a globally abundant, armor-plated marine algae, Emiliania huxleyi,   
   has found that the circular, chalk plates the algae produce can act as   
   catalysts for viral infection, which has vast consequences for trillions   
   of microscopic oceanic creatures and the global carbon cycle.   
      
      
   ==========================================================================   
   "In a drop of seawater, there will be about 1,000 to 10,000   
   E. huxleyicells, and about 10 million viruses," said Kay Bidle, a   
   professor in the Department of Marine and Coastal Sciences at Rutgers   
   School of Environmental and Biological Sciences (SEBS) and a senior   
   author on the study. "They're all in a sort of arms race against   
   each other and we are studying it to see how it plays out and impacts   
   Earth's carbon cycle."  Reporting in Science Advances, the researchers   
   said they discovered, through observations both in the ocean and in the   
   laboratory, that the chalk (calcium carbonate) plates, called coccoliths,   
   are a previously unrealized central player in viral infections that can   
   collapse phytoplankton blooms the size of some countries within weeks.   
      
   "Coccoliths can act as catalysts for death, delivering viruses directly   
   to algae cells for successful infection," said Christopher Johns, a   
   doctoral student in the Department of Marine and Coastal Sciences at   
   SEBS and lead author on the study.   
      
   E. huxleyiis a one-celled species of phytoplankton, which, like trees,   
   performs photosynthesis. In the case of phytoplankton, they convert   
   carbon dioxide dissolved in ocean water into organic compounds, and at   
   the same time produce oxygen.   
      
   "The phytoplankton in the oceans contribute about half of Earth's oxygen,   
   with the other half coming from land plants," Bidle said. "Every other   
   breath you take is from phytoplankton."  E. huxleyiis well-known for   
   its ability to biomineralize calcium carbonate, similar to corals, by   
   producing coccoliths, which are arranged on the cell surface to form   
   an armored layer. These coccoliths are produced and then shed into the   
   surrounding seawater in a continuous cycle.   
      
   For years, the function of these coccoliths has been poorly understood,   
   according to Bidle. Researchers believed the chalk armor existed in   
   part to protect phytoplankton from getting infected by viruses. And the   
   discarded, free coccoliths were commonly thought of as passively drifting   
   planktonic particles with little biological or ecological roles.   
      
   But in experiments conducted in laboratories on the Cook campus at Rutgers   
   University-New Brunswick, Johns and other team members observed that   
   the expelled coccoliths can find their way back to the E. huxleyicells,   
   reattach, and at the same time ferry viral particles, facilitating   
   infection. This ability to propagate and catalyze infection is one   
   unexpected role of the coccoliths with important potential ecosystem   
   outcomes.   
      
   The discovery also has an important connection to climate change and   
   the Earth's carbon cycle, Bidle said. Infected E. huxleyicells produce   
   a sticky glue that can help aggregate particles into what is called   
   "marine snow." When marine snow sinks to the deep ocean, it helps to   
   sequester and bury carbon, removing it from the atmosphere for centuries   
   to millennia. Coccoliths are important in this process because they   
   are heavier than seawater and help make particles sink faster and more   
   rapidly into the deep ocean.   
      
   By assisting in the death of the phytoplankton, as well as in marine   
   snow formation and sinking, the coccolith biominerals can ultimately   
   have a positive impact on the removal of carbon dioxide from the upper   
   ocean and atmosphere, Bidle said.   
      
   "This means the coccoliths facilitate the process of sequestering or   
   sinking carbon into the deep ocean for thousands of years, making them   
   important players in balancing the Earth's carbon cycle," Bidle said.   
      
   Other Rutgers researchers on the study include Associate Professor   
   Heidi Fuchs; Karen Grace Bondoc-Naumovitz, a former postdoctoral fellow   
   now at the University of Exeter in England; and Alexandra Matthews,   
   a former undergraduate student, all within the Department of Marine and   
   Coastal Sciences.   
      
   Researchers from the U.S. Department of Energy's Oak Ridge National   
   Laboratory, the University of California-Santa Barbara, and the University   
   of North Carolina-Wilmington also were involved in the study.   
      
       * RELATED_TOPICS   
             o Health_&_Medicine   
                   # Viruses # HIV_and_AIDS # Infectious_Diseases   
                   # Healthy_Aging # STD # Medical_Topics #   
                   Diseases_and_Conditions # Vegetarian   
       * RELATED_TERMS   
             o Seaweed o Red_tide o Natural_killer_cell o H5N1 o   
             Microorganism o Encephalitis o West_Nile_virus o Wart   
      
   ==========================================================================   
   Story Source: Materials provided by Rutgers_University. Original written   
   by Kitta MacPherson.   
      
   Note: Content may be edited for style and length.   
      
      
   ==========================================================================   
   Journal Reference:   
      1. Christopher T. Johns, Karen Grace Bondoc-Naumovitz, Alexandra   
      Matthews,   
         Paul G. Matson, M. Debora Iglesias-Rodriguez, Alison R. Taylor,   
         Heidi L.   
      
         Fuchs, Kay D. Bidle. Adsorptive exchange of coccolith biominerals   
         facilitates viral infection. Science Advances, 2023; 9 (3) DOI:   
         10.1126/ sciadv.adc8728   
   ==========================================================================   
      
   Link to news story:   
   https://www.sciencedaily.com/releases/2023/03/230306143506.htm   
      
   --- up 1 year, 1 week, 10 hours, 50 minutes   
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)   
   SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 226/30 227/114 229/111   
   SEEN-BY: 229/112 113 307 317 400 426 428 470 664 700 292/854 298/25   
   SEEN-BY: 305/3 317/3 320/219 396/45   
   PATH: 317/3 229/426   
      

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]


(c) 1994,  bbs@darkrealms.ca