Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 7,753 of 8,931    |
|    ScienceDaily to All    |
|    Microscopic chalk discs in oceans play a    |
|    06 Mar 23 21:30:30    |
      MSGID: 1:317/3 6406bdeb       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Microscopic chalk discs in oceans play a key role in earth's carbon       cycle by propagating viruses         Rutgers-led research finds biomineral structures formed by marine algae       foment viral infection, contributing positively to capture CO2                Date:        March 6, 2023        Source:        Rutgers University        Summary:        A team of scientists studying virus-host interactions of a        globally abundant, armor-plated marine algae, Emiliania huxleyi,        has found that the circular, chalk plates the algae produce can        act as catalysts for viral infection, which has vast consequences        for trillions of microscopic oceanic creatures and the global        carbon cycle.                      Facebook Twitter Pinterest LinkedIN Email       FULL STORY       ==========================================================================       A Rutgers-led team of scientists studying virus-host interactions of       a globally abundant, armor-plated marine algae, Emiliania huxleyi,       has found that the circular, chalk plates the algae produce can act as       catalysts for viral infection, which has vast consequences for trillions       of microscopic oceanic creatures and the global carbon cycle.                     ==========================================================================       "In a drop of seawater, there will be about 1,000 to 10,000       E. huxleyicells, and about 10 million viruses," said Kay Bidle, a       professor in the Department of Marine and Coastal Sciences at Rutgers       School of Environmental and Biological Sciences (SEBS) and a senior       author on the study. "They're all in a sort of arms race against       each other and we are studying it to see how it plays out and impacts       Earth's carbon cycle." Reporting in Science Advances, the researchers       said they discovered, through observations both in the ocean and in the       laboratory, that the chalk (calcium carbonate) plates, called coccoliths,       are a previously unrealized central player in viral infections that can       collapse phytoplankton blooms the size of some countries within weeks.              "Coccoliths can act as catalysts for death, delivering viruses directly       to algae cells for successful infection," said Christopher Johns, a       doctoral student in the Department of Marine and Coastal Sciences at       SEBS and lead author on the study.              E. huxleyiis a one-celled species of phytoplankton, which, like trees,       performs photosynthesis. In the case of phytoplankton, they convert       carbon dioxide dissolved in ocean water into organic compounds, and at       the same time produce oxygen.              "The phytoplankton in the oceans contribute about half of Earth's oxygen,       with the other half coming from land plants," Bidle said. "Every other       breath you take is from phytoplankton." E. huxleyiis well-known for       its ability to biomineralize calcium carbonate, similar to corals, by       producing coccoliths, which are arranged on the cell surface to form       an armored layer. These coccoliths are produced and then shed into the       surrounding seawater in a continuous cycle.              For years, the function of these coccoliths has been poorly understood,       according to Bidle. Researchers believed the chalk armor existed in       part to protect phytoplankton from getting infected by viruses. And the       discarded, free coccoliths were commonly thought of as passively drifting       planktonic particles with little biological or ecological roles.              But in experiments conducted in laboratories on the Cook campus at Rutgers       University-New Brunswick, Johns and other team members observed that       the expelled coccoliths can find their way back to the E. huxleyicells,       reattach, and at the same time ferry viral particles, facilitating       infection. This ability to propagate and catalyze infection is one       unexpected role of the coccoliths with important potential ecosystem       outcomes.              The discovery also has an important connection to climate change and       the Earth's carbon cycle, Bidle said. Infected E. huxleyicells produce       a sticky glue that can help aggregate particles into what is called       "marine snow." When marine snow sinks to the deep ocean, it helps to       sequester and bury carbon, removing it from the atmosphere for centuries       to millennia. Coccoliths are important in this process because they       are heavier than seawater and help make particles sink faster and more       rapidly into the deep ocean.              By assisting in the death of the phytoplankton, as well as in marine       snow formation and sinking, the coccolith biominerals can ultimately       have a positive impact on the removal of carbon dioxide from the upper       ocean and atmosphere, Bidle said.              "This means the coccoliths facilitate the process of sequestering or       sinking carbon into the deep ocean for thousands of years, making them       important players in balancing the Earth's carbon cycle," Bidle said.              Other Rutgers researchers on the study include Associate Professor       Heidi Fuchs; Karen Grace Bondoc-Naumovitz, a former postdoctoral fellow       now at the University of Exeter in England; and Alexandra Matthews,       a former undergraduate student, all within the Department of Marine and       Coastal Sciences.              Researchers from the U.S. Department of Energy's Oak Ridge National       Laboratory, the University of California-Santa Barbara, and the University       of North Carolina-Wilmington also were involved in the study.               * RELATED_TOPICS        o Health_&_Medicine        # Viruses # HIV_and_AIDS # Infectious_Diseases        # Healthy_Aging # STD # Medical_Topics #        Diseases_and_Conditions # Vegetarian        * RELATED_TERMS        o Seaweed o Red_tide o Natural_killer_cell o H5N1 o        Microorganism o Encephalitis o West_Nile_virus o Wart              ==========================================================================       Story Source: Materials provided by Rutgers_University. Original written       by Kitta MacPherson.              Note: Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Christopher T. Johns, Karen Grace Bondoc-Naumovitz, Alexandra        Matthews,        Paul G. Matson, M. Debora Iglesias-Rodriguez, Alison R. Taylor,        Heidi L.               Fuchs, Kay D. Bidle. Adsorptive exchange of coccolith biominerals        facilitates viral infection. Science Advances, 2023; 9 (3) DOI:        10.1126/ sciadv.adc8728       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/03/230306143506.htm              --- up 1 year, 1 week, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 226/30 227/114 229/111       SEEN-BY: 229/112 113 307 317 400 426 428 470 664 700 292/854 298/25       SEEN-BY: 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca