Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 7,723 of 8,931    |
|    ScienceDaily to All    |
|    Researchers propose a simple, inexpensiv    |
|    02 Mar 23 21:30:22    |
      MSGID: 1:317/3 640177f2       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Researchers propose a simple, inexpensive approach to fabricating carbon       nanotube wiring on plastic films                Date:        March 2, 2023        Source:        Tokyo University of Science        Summary:        Researchers have developed an inexpensive method for fabricating        multi- walled carbon nanotubes (MWNTs) on a plastic film. The        proposed method is simple, can be applied under ambient conditions,        reuses MWNTs, and produces flexible wires of tunable resistances        without requiring additional steps. It eliminates several drawbacks        of current fabrication methods, making it useful for large-scale        manufacturing of carbon wiring for flexible all-carbon devices.                      Facebook Twitter Pinterest LinkedIN Email       FULL STORY       ==========================================================================       Researchers from Tokyo University of Science in Japan have developed an       inexpensive method for fabricating multi-walled carbon nanotubes (MWNTs)       on a plastic film. The proposed method is simple, can be applied under       ambient conditions, reuses MWNTs, and produces flexible wires of tunable       resistances without requiring additional steps. It eliminates several       drawbacks of current fabrication methods, making it useful for large-scale       manufacturing of carbon wiring for flexible all-carbon devices.                     ==========================================================================       Carbon nanotubes (CNTs) are cylindrical tube-like structures made       of carbon atoms that display highly desirable physical properties       like high strength, low weight, and excellent thermal and electrical       conductivities. This makes them ideal materials for various applications,       including reinforcement materials, energy storage and conversion       devices, and electronics. Despite such immense potential, however,       there have been challenges in commercializing CNTs, such as their       incorporation on plastic substrates for fabricating flexible CNT-based       devices. Traditional fabrication methods require carefully controlled       environments such as high temperatures and a clean room. Further, they       require repeat transfers to produce CNTs with different resistance values.              More direct methods such as laser-induced forward transfer (LIFT) and       thermal fusion (TF) have been developed as alternatives. In the LIFT       method, a laser is used to directly transfer CNTs onto substrates, while       in TF, CNTs are mixed with polymers that are then selectively removed       by a laser to form CNT wires with varying resistance values. However,       both these methods are expensive and have their unique problems. LIFT       requires expensive pulsed lasers and preparation of CNTs with specific       resistance values, while TF uses large amounts of CNTs that are not       utilized and go to waste.              Aiming to develop a more simple and inexpensive approach, Associate       Professor Dr. Takashi Ikuno along with his collaborators, Mr. Hiroaki       Komatsu, Mr. Yosuke Sugita and Mr. Takahiro Matsunami at Tokyo       University of Science, Japan, recently proposed a novel method that       enables fabrication of multi-walled CNT (MWNT) wiring on a plastic film       under ambient conditions (room temperature and atmospheric pressure)       using a low-cost laser.              The breakthrough, published in the journal Scientific Reports on 08       February 2023, involves coating a polypropylene (PP) film with an MWNT       film about 10 mm thick and then exposing it to a mW UV laser. The result       is a conductive wiring made of a combination of MWNT and PP.              "This process enables the easy 'drawing' of wiring and flexible devices       for wearable sensors without the need for complex processes," highlights       Dr. Ikuno.              The researchers attributed the formation of these wires to the difference       in the thermal conductivities between the MWNT and the PP film. As the       MWNT/PP film is exposed to the laser, the high thermal conductivity       of the MWNT layer causes the heat to spread along the length of the       wire, resulting in high temperatures at the MWNT-PP interface and lower       temperatures elsewhere in the PP film. Directly below the laser, where       temperatures are the highest, the PP diffuses into the MWNT film to form       a thick PP/MWNT composite, while a thin PP/ MWNT layer is formed at the       edges of the laser where temperatures are relatively low.              The proposed method also allows the fabrication of carbon wires with       different resistance values within the same process (without repeat       transfer) by simply changing the irradiation conditions, thereby       eliminating the need for additional steps. Exposing the PP/MWNT film       to high laser energies, achieved either by low scanning speeds, a high       number of laser exposures, or the use of a high-powered laser, produces       thicker wires with a higher concentration of MWNTs. Consequently, the       lower resistivity of MWNT and the thicker wire lowers the resistance       per unit length of the wire (resistance is directly proportional to the       ratio between the resistivity and the thickness of the wire).              By precisely controlling the exposure of the MWNT/PP film to laser       light, the researchers successfully fabricated MWNT wires with a wide       range of resistance values, from 0.789 kO/cm to 114 kO/cm. Moreover,       these wires were highly flexible and maintained their resistance even       when bent repeatedly.              Additionally, the method solved one of the pressing issues with current       techniques, namely the inability of LIFT and TF techniques to reuse       CNTs not utilized in the fabrication process. In the proposed method,       MWNTs not incorporated into the PP film during laser irradiation can be       recovered and reused, allowing for the creation of new MWNT wires with       little to no change in resistance values.              With its simplicity, efficient utilization of CNTs, and the capability       to create high-quality wires, the new method has the potential to realize       large- scale manufacturing of flexible carbon wiring for flexible sensors       and energy conversion and storage devices.              "We expect the process cost to be significantly reduced compared to       that for conventional methods. This, in turn, will contribute to the       realization of low- cost flexible sensors that are expected to have wide       applications in large quantities," concludes Dr. Ikuno.               * RELATED_TOPICS        o Matter_&_Energy        # Optics # Electronics # Graphene # Detectors #        Wearable_Technology # Thermodynamics # Chemistry # Physics        * RELATED_TERMS        o Carbon_nanotube o Carbon-14 o Hydrocarbon o Carbon_dioxide        o Carbon_monoxide o Silicon o Fullerene o Radiocarbon_dating              ==========================================================================       Story Source: Materials provided by Tokyo_University_of_Science. Note:       Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Hiroaki Komatsu, Takahiro Matsunami, Yosuke Sugita, Takashi        Ikuno. Direct        formation of carbon nanotube wiring with controlled electrical        resistance on plastic films. Scientific Reports, 2023; 13 (1) DOI:        10.1038/s41598- 023-29578-w       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/03/230302093402.htm              --- up 1 year, 3 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 226/30 227/114 229/111       SEEN-BY: 229/112 113 307 317 400 426 428 470 664 700 292/854 298/25       SEEN-BY: 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca