Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 7,717 of 8,931    |
|    ScienceDaily to All    |
|    DNA repair discovery could improve biote    |
|    02 Mar 23 21:30:22    |
      MSGID: 1:317/3 640177e0       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        DNA repair discovery could improve biotechnology                Date:        March 2, 2023        Source:        Michigan State University        Summary:        A team of researchers has made a discovery that may have        implications for therapeutic gene editing strategies, cancer        diagnostics and therapies and other advancements in biotechnology.                      Facebook Twitter Pinterest LinkedIN Email       FULL STORY       ==========================================================================       A team of researchers from Michigan State University's College of       Veterinary Medicine has made a discovery that may have implications for       therapeutic gene editing strategies, cancer diagnostics and therapies       and other advancements in biotechnology.                     ==========================================================================       Kathy Meek, a professor in the College of Veterinary Medicine, and       collaborators at Cambridge University and the National Institutes       of Health have uncovered a previously unknown aspect of how DNA       double-stranded breaks are repaired.              A large protein kinase called DNA-PK starts the DNA repair process; in       their new report, two distinct DNA-PK protein complexes are characterized,       each of which has a specific role in DNA repair that cannot be assumed       by the other.              "It still gives me chills," says Meek. "I don't think anyone would have       predicted this." Meek's findings are published in Molecular Cell,a       high-impact journal that covers core cellular processes like DNA repair.              How DNA double-stranded breaks are repaired DNA, the blueprint of       life, is shaped like a helix; however, DNA is surprisingly easy to       damage. Ultraviolet light, for example, and many cancer therapies       including ionizing radiation and other specific drugs can all cause damage       to DNA. Sometimes, only one of the two strands break. Because the DNA is       still held together by the second strand, cells can repair the DNA fairly       easily -- the cells just copy the information from the second strand.              It is more difficult for cells to repair DNA damage when both strands       are broken. Information in the form of nucleotides can be lost and       must be added back in before the DNA ends are rejoined. If a cell has       multiple DNA double- stranded breaks, the DNA ends can be joined with       the wrong partner. This type of mistake is often associated with many       types of cancers.              Double-stranded breaks also can be more difficult to repair if       DNA-damaging agents cause chemical modifications at the DNA ends. Damaged       DNA ends are often referred to as "dirty" ends.              DNA-PK can help repair DNA double-stranded breaks in one of two ways. For       breaks with missing information, it can target enzymes that can fill in       missing nucleotides -- sort of like a needle and thread stitching the       DNA back together. For "dirty" ends, DNA-PK recruits enzymes that can       cut off the damaged DNA so that the ends can be rejoined.              This much was already known, but a key question remained unanswered in       the scientific literature -- until now: how does DNA-PK know whether to       fill in or cut off ends at a double-stranded break? Discovery of two       DNA-PK complexes: Fill in and cut off Meek's team and their collaborators       previously published structural studies that revealed two different       DNA-PK complexes, called dimers. While many molecular geneticists already       suspected that DNA-PK helps hold DNA ends together during the rejoining       process, many wondered why there would be two dimers, instead of just one.              In their new study, Meek and her collaborators discovered that the two       distinct DNA-PK dimers have different functions; one complex recruits       enzymes that fill in lost information, while the other activates cutting       enzymes that remove "dirty" ends. The team also discovered that repair       efficacy depends on equilibrium between the two dimers.               * RELATED_TOPICS        o Health_&_Medicine        # Genes # Human_Biology # Forensics        o Matter_&_Energy        # Organic_Chemistry # Biometric # Microarrays        o Computers_&_Math        # Computational_Biology # Encryption #        Information_Technology        * RELATED_TERMS        o Drug_discovery o Gene_therapy o Cervical_cancer o        BRCA1 o Breast_cancer o Biopharmaceutical o Stem_cell o        Energy_(healing_or_psychic_or_spiritual)              ==========================================================================       Story Source: Materials provided by Michigan_State_University. Original       written by Emily Lenhard. Note: Content may be edited for style and       length.                     ==========================================================================       Journal Reference:        1. Christopher J. Buehl, Noah J. Goff, Steven W. Hardwick, Martin        Gellert,        Tom L. Blundell, Wei Yang, Amanda K. Chaplin, Katheryn Meek. Two        distinct long-range synaptic complexes promote different        aspects of end processing prior to repair of DNA breaks by        non-homologous end joining. Molecular Cell, 2023; 83 (5): 698 DOI:        10.1016/j.molcel.2023.01.012       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/03/230302114017.htm              --- up 1 year, 3 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 226/30 227/114 229/111       SEEN-BY: 229/112 113 307 317 400 426 428 470 664 700 292/854 298/25       SEEN-BY: 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca