Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 7,640 of 8,931    |
|    ScienceDaily to All    |
|    Artificial intelligence conjures protein    |
|    22 Feb 23 21:30:22    |
      MSGID: 1:317/3 63f6ebf1       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Artificial intelligence conjures proteins that speed up chemical       reactions         A team has devised machine-learning algorithms that created light-       emitting enzymes called luciferases                Date:        February 22, 2023        Source:        University of Washington School of Medicine/UW Medicine        Summary:        Scientists have used machine learning to create brand-new enzymes,        which are proteins that accelerate chemical reactions. This        is an important step in the field of protein design as new        enzymes could have many uses across medicine and industrial        manufacturing. The research team devised deep-learning, artificial        intelligence algorithms that created light- emitting enzymes called        luciferases. Laboratory testing confirmed that the new enzymes        can recognize specific chemicals and emit light very efficiently.                      Facebook Twitter Pinterest LinkedIN Email       FULL STORY       ==========================================================================       For the first time, scientists have used machine learning to       create brand-new enzymes, which are proteins that accelerate chemical       reactions. This is an important step in the field of protein design as new       enzymes could have many uses across medicine and industrial manufacturing.                     ==========================================================================       "Living organisms are remarkable chemists. Rather than relying on toxic       compounds or extreme heat, they use enzymes to break down or build       up whatever they need under gentle conditions. New enzymes could put       renewable chemicals and biofuels within reach," said senior author David       Baker, professor of biochemistry at the University of Washington School       of Medicine and recipient of the 2021 Breakthrough Prize in Life Sciences.              As reported Feb, 22 in the journal Nature, a team based at the Institute       for Protein Design at UW Medicine devised machine-learning algorithms       that can create light-emitting enzymes called luciferases. Laboratory       testing confirmed that the new enzymes can recognize specific chemicals       and emit light very efficiently. This project was led by two postdoctoral       scholars in the Baker Lab, Andy Hsien-Wei Yeh and Christoffer Norn.              The Naturepaper is titled De novo design of luciferases using deep       learning.              To create new luciferase enzymes, the team first selected chemicals       called luciferins that they wanted the proteins to act upon. They then       used software to generate thousands of possible protein structures that       might react with those chemicals.              During laboratory testing, the researchers identified an efficient       enzyme, dubbed LuxSit (Let there be light). The enzyme performed the       desired chemical reaction. Refinement of the enzyme led to dramatic       improvements in performance.              An optimized enzyme, dubbed LuxSit-i, generated enough light to be       visible to the naked eye. It was found to be brighter than the natural       luciferase enzyme found in the glowing sea pansy Renilla reniformis.              "We were able to design very efficient enzymes from scratch on the       computer, as opposed to relying on enzymes found in nature. This       breakthrough means that custom enzymes for almost any chemical reaction       could, in principle, be designed," said Yeh.              New enzymes could benefit biotechnology, medicine, environmental       remediation, and manufacturing. For example, in biotechnology, enzymes       can improve biofuel production, food processing, and pharmaceutical       manufacturing. In medicine, enzymes can serve as therapeutic and       diagnostic tools. Enzyme design can improve the environment by breaking       down pollutants or cleaning up contaminated sites. And enzymes may also       aid in the production of new materials such as biodegradable plastics       and adhesives.              This research was led by UW School of Medicine scientists and included       collaborators at the University of California, Los Angeles.              This work was supported by the Howard Hughes Medical Institute, National       Institutes of Health (K99EB031913), United World Antiviral Research       Network, National Institute of Allergy and Infectious Disease (1 U01       AI151698-01), Audacious Project at the Institute for Protein Design,       Open Philanthropy Project Improving Protein Design Fund, Novo Nordisk       Foundation (NNF18OC0030446), National Science Foundation (CHE-1764328,       OCI-1053575), and Eric and Wendy Schmidt by recommendation of the Schmidt       Futures program.              National Natural Science Foundation of China (22103060) provided partial       computational resources.               * RELATED_TOPICS        o Matter_&_Energy        # Biochemistry # Organic_Chemistry # Optics # Chemistry        o Computers_&_Math        # Software # Computer_Modeling # Artificial_Intelligence        # Video_Games        * RELATED_TERMS        o Protein o Artificial_intelligence o Industrial_robot        o Denaturation_(biochemistry) o Bioinformatics o        Electromagnetic_spectrum o Computer_vision o Electroluminescence              ==========================================================================       Story Source: Materials provided by       University_of_Washington_School_of_Medicine/UW_Medicine.              Original written by Ian Haydon. Note: Content may be edited for style       and length.                     ==========================================================================       Journal Reference:        1. Andy Hsien-Wei Yeh, Christoffer Norn, Yakov Kipnis, Doug Tischer,        Samuel        J. Pellock, Declan Evans, Pengchen Ma, Gyu Rie Lee, Jason Z. Zhang,        Ivan Anishchenko, Brian Coventry, Longxing Cao, Justas Dauparas,        Samer Halabiya, Michelle DeWitt, Lauren Carter, K. N. Houk, David        Baker. De novo design of luciferases using deep learning. Nature,        2023; 614 (7949): 774 DOI: 10.1038/s41586-023-05696-3       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/02/230222141133.htm              --- up 51 weeks, 2 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 226/30 227/114 229/111       SEEN-BY: 229/112 113 307 317 400 426 428 470 664 700 292/854 298/25       SEEN-BY: 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca