Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 7,593 of 8,931    |
|    ScienceDaily to All    |
|    Electronic metadevices break barriers to    |
|    17 Feb 23 21:30:24    |
      MSGID: 1:317/3 63f0546e       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Electronic metadevices break barriers to ultra-fast communications                      Date:        February 17, 2023        Source:        Ecole Polytechnique Fe'de'rale de Lausanne        Summary:        EPFL researchers have come up with a new approach to electronics        that involves engineering metastructures at the sub-wavelength        scale. It could launch the next generation of ultra-fast devices        for exchanging massive amounts of data, with applications in 6G        communications and beyond.                      Facebook Twitter Pinterest LinkedIN Email       FULL STORY       ==========================================================================       Until now, the ability to make electronic devices faster has come down to       a simple principle: scaling down transistors and other components. But       this approach is reaching its limit, as the benefits of shrinking are       counterbalanced by detrimental effects like resistance and decreased       output power.                     ==========================================================================       Elison Matioli of the Power and Wide-band-gap Electronics Research       Lab (POWERlab) in EPFL's School of Engineering explains that further       miniaturization is therefore not a viable solution to better electronics       performance. "New papers come out describing smaller and smaller       devices, but in the case of materials made from gallium nitride, the       best devices in terms of frequency were already published a few years       back," he says. "After that, there is really nothing better, because       as device size is reduced, we face fundamental limitations. This is       true regardless of the material used." In response to this challenge,       Matioli and PhD student Mohammad Samizadeh Nikoo came up with a new       approach to electronics that could overcome these limitations and enable       a new class of terahertz devices. Instead of shrinking their device, they       rearranged it, notably by etching patterned contacts called metastructures       at sub-wavelength distances onto a semiconductor made of gallium nitride       and indium gallium nitride. These metastructures allow the electrical       fields inside the device to be controlled, yielding extraordinary       properties that do not occur in nature.              Crucially, the device can operate at electromagnetic frequencies in the       terahertz range (between 0.3-30 THz) -- significantly faster than the       gigahertz waves used in today's electronics. They can therefore carry much       greater quantities of information for a given signal or period, giving       them great potential for applications in 6G communications and beyond.              "We found that manipulating radiofrequency fields at microscopic scales       can significantly boost the performance of electronic devices, without       relying on aggressive downscaling," explains Samizadeh Nikoo, who is       the first author of an article on the breakthrough recently published       in the journal Nature.              Record high frequencies, record low resistance Because terahertz       frequencies are too fast for current electronics to manage, and too slow       for optics applications, this range is often referred to as the 'terahertz       gap'. Using sub-wavelength metastructures to modulate terahertz waves       is a technique that comes from the world of optics. But the POWERlab's       method allows for an unprecedented degree of electronic control, unlike       the optics approach of shining an external beam of light onto an existing       pattern.              "In our electronics-based approach, the ability to control induced       radiofrequencies comes from the combination of the sub-wavelength       patterned contacts, plus the control of the electronic channel with       applied voltage. This means that we can change the collective effect       inside the metadevice by inducing electrons (or not)," says Matioli.              While the most advanced devices on the market today can achieve       frequencies of up to 2 THz, the POWERlab's metadevices can reach 20       THz. Similarly, today's devices operating near the terahertz range tend to       break down at voltages below 2 volts, while the metadevices can support       over 20 volts. This enables the transmission and modulation of terahertz       signals with much greater power and frequency than is currently possible.              Integrated solutions As Samizadeh Nikoo explains, modulating terahertz       waves is crucial for the future of telecommunications, as the increasing       data requirements of technologies like autonomous vehicles and 6G mobile       communications are fast reaching the limits of today's devices. The       electronic metadevices developed in the POWERlab could form the basis       for integrated terahertz electronics by producing compact, high-frequency       chips that can already be used with smartphones, for example.              "This new technology could change the future of ultra-high-speed       communications, as it is compatible with existing processes in       semiconductor manufacturing. We have demonstrated data transmission of       up to 100 gigabits per second at terahertz frequencies, which is already       10 times higher than what we have today with 5G," Samizadeh Nikoo says.              To fully realize the potential of the approach, Matioli says the next       step is to develop other electronics components ready for integration       into terahertz circuits.              "Integrated terahertz electronics are the next frontier for a connected       future.              But our electronic metadevices are just one component. We need to develop       other integrated terahertz components to fully realize the potential of       this technology. That is our vision and goal."        * RELATED_TOPICS        o Matter_&_Energy        # Electronics # Technology # Spintronics #        Consumer_Electronics        o Computers_&_Math        # Spintronics_Research # Mobile_Computing #        Computers_and_Internet # Information_Technology        * RELATED_TERMS        o Electrical_engineering o Safety_engineering o        Tissue_engineering o Mechanical_engineering o Materials_science        o Nanotechnology o Electricity_generation o Electricity              ==========================================================================       Story Source: Materials provided by       Ecole_Polytechnique_Fe'de'rale_de_Lausanne. Original written by Celia       Luterbacher. Note: Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Mohammad Samizadeh Nikoo, Elison Matioli. Electronic metadevices for        terahertz applications. Nature, 2023; 614 (7948): 451 DOI: 10.1038/        s41586-022-05595-z       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/02/230217103932.htm              --- up 50 weeks, 4 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 226/30 227/114 229/110       SEEN-BY: 229/111 112 113 114 307 317 400 426 428 470 664 700 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca