home bbs files messages ]

Just a sample of the Echomail archive

Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.

   EARTH      Uhh, that 3rd rock from the sun?      8,931 messages   

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]

   Message 7,593 of 8,931   
   ScienceDaily to All   
   Electronic metadevices break barriers to   
   17 Feb 23 21:30:24   
   
   MSGID: 1:317/3 63f0546e   
   PID: hpt/lnx 1.9.0-cur 2019-01-08   
   TID: hpt/lnx 1.9.0-cur 2019-01-08   
    Electronic metadevices break barriers to ultra-fast communications   
      
      
     Date:   
         February 17, 2023   
     Source:   
         Ecole Polytechnique Fe'de'rale de Lausanne   
     Summary:   
         EPFL researchers have come up with a new approach to electronics   
         that involves engineering metastructures at the sub-wavelength   
         scale. It could launch the next generation of ultra-fast devices   
         for exchanging massive amounts of data, with applications in 6G   
         communications and beyond.   
      
      
         Facebook Twitter Pinterest LinkedIN Email   
   FULL STORY   
   ==========================================================================   
   Until now, the ability to make electronic devices faster has come down to   
   a simple principle: scaling down transistors and other components. But   
   this approach is reaching its limit, as the benefits of shrinking are   
   counterbalanced by detrimental effects like resistance and decreased   
   output power.   
      
      
   ==========================================================================   
   Elison Matioli of the Power and Wide-band-gap Electronics Research   
   Lab (POWERlab) in EPFL's School of Engineering explains that further   
   miniaturization is therefore not a viable solution to better electronics   
   performance. "New papers come out describing smaller and smaller   
   devices, but in the case of materials made from gallium nitride, the   
   best devices in terms of frequency were already published a few years   
   back," he says. "After that, there is really nothing better, because   
   as device size is reduced, we face fundamental limitations. This is   
   true regardless of the material used."  In response to this challenge,   
   Matioli and PhD student Mohammad Samizadeh Nikoo came up with a new   
   approach to electronics that could overcome these limitations and enable   
   a new class of terahertz devices. Instead of shrinking their device, they   
   rearranged it, notably by etching patterned contacts called metastructures   
   at sub-wavelength distances onto a semiconductor made of gallium nitride   
   and indium gallium nitride. These metastructures allow the electrical   
   fields inside the device to be controlled, yielding extraordinary   
   properties that do not occur in nature.   
      
   Crucially, the device can operate at electromagnetic frequencies in the   
   terahertz range (between 0.3-30 THz) -- significantly faster than the   
   gigahertz waves used in today's electronics. They can therefore carry much   
   greater quantities of information for a given signal or period, giving   
   them great potential for applications in 6G communications and beyond.   
      
   "We found that manipulating radiofrequency fields at microscopic scales   
   can significantly boost the performance of electronic devices, without   
   relying on aggressive downscaling," explains Samizadeh Nikoo, who is   
   the first author of an article on the breakthrough recently published   
   in the journal Nature.   
      
   Record high frequencies, record low resistance Because terahertz   
   frequencies are too fast for current electronics to manage, and too slow   
   for optics applications, this range is often referred to as the 'terahertz   
   gap'. Using sub-wavelength metastructures to modulate terahertz waves   
   is a technique that comes from the world of optics. But the POWERlab's   
   method allows for an unprecedented degree of electronic control, unlike   
   the optics approach of shining an external beam of light onto an existing   
   pattern.   
      
   "In our electronics-based approach, the ability to control induced   
   radiofrequencies comes from the combination of the sub-wavelength   
   patterned contacts, plus the control of the electronic channel with   
   applied voltage. This means that we can change the collective effect   
   inside the metadevice by inducing electrons (or not)," says Matioli.   
      
   While the most advanced devices on the market today can achieve   
   frequencies of up to 2 THz, the POWERlab's metadevices can reach 20   
   THz. Similarly, today's devices operating near the terahertz range tend to   
   break down at voltages below 2 volts, while the metadevices can support   
   over 20 volts. This enables the transmission and modulation of terahertz   
   signals with much greater power and frequency than is currently possible.   
      
   Integrated solutions As Samizadeh Nikoo explains, modulating terahertz   
   waves is crucial for the future of telecommunications, as the increasing   
   data requirements of technologies like autonomous vehicles and 6G mobile   
   communications are fast reaching the limits of today's devices. The   
   electronic metadevices developed in the POWERlab could form the basis   
   for integrated terahertz electronics by producing compact, high-frequency   
   chips that can already be used with smartphones, for example.   
      
   "This new technology could change the future of ultra-high-speed   
   communications, as it is compatible with existing processes in   
   semiconductor manufacturing. We have demonstrated data transmission of   
   up to 100 gigabits per second at terahertz frequencies, which is already   
   10 times higher than what we have today with 5G," Samizadeh Nikoo says.   
      
   To fully realize the potential of the approach, Matioli says the next   
   step is to develop other electronics components ready for integration   
   into terahertz circuits.   
      
   "Integrated terahertz electronics are the next frontier for a connected   
   future.   
      
   But our electronic metadevices are just one component. We need to develop   
   other integrated terahertz components to fully realize the potential of   
   this technology. That is our vision and goal."   
       * RELATED_TOPICS   
             o Matter_&_Energy   
                   # Electronics # Technology # Spintronics #   
                   Consumer_Electronics   
             o Computers_&_Math   
                   # Spintronics_Research # Mobile_Computing #   
                   Computers_and_Internet # Information_Technology   
       * RELATED_TERMS   
             o Electrical_engineering o Safety_engineering o   
             Tissue_engineering o Mechanical_engineering o Materials_science   
             o Nanotechnology o Electricity_generation o Electricity   
      
   ==========================================================================   
   Story Source: Materials provided by   
   Ecole_Polytechnique_Fe'de'rale_de_Lausanne. Original written by Celia   
   Luterbacher. Note: Content may be edited for style and length.   
      
      
   ==========================================================================   
   Journal Reference:   
      1. Mohammad Samizadeh Nikoo, Elison Matioli. Electronic metadevices for   
         terahertz applications. Nature, 2023; 614 (7948): 451 DOI: 10.1038/   
         s41586-022-05595-z   
   ==========================================================================   
      
   Link to news story:   
   https://www.sciencedaily.com/releases/2023/02/230217103932.htm   
      
   --- up 50 weeks, 4 days, 10 hours, 50 minutes   
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)   
   SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 226/30 227/114 229/110   
   SEEN-BY: 229/111 112 113 114 307 317 400 426 428 470 664 700 292/854   
   SEEN-BY: 298/25 305/3 317/3 320/219 396/45   
   PATH: 317/3 229/426   
      

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]


(c) 1994,  bbs@darkrealms.ca