Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 7,538 of 8,931    |
|    ScienceDaily to All    |
|    Computer model IDs roles of individual g    |
|    10 Feb 23 21:30:38    |
      MSGID: 1:317/3 63e719f6       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Computer model IDs roles of individual genes in early embryonic       development         May provide insight into birth defects, miscarriage, cancer                Date:        February 10, 2023        Source:        Washington University School of Medicine        Summary:        Computer software can predict what happens to complex gene        networks when individual genes are missing or dialed up more than        usual. Mapping the roles of single genes in these networks is key        to understanding healthy development and finding ways to regrow        damaged cells and tissues.               Understanding genetic errors could provide insight into birth        defects, miscarriage or even cancer.                      Facebook Twitter Pinterest LinkedIN Email       FULL STORY       ==========================================================================       Computer software developed at Washington University School of Medicine       in St.              Louis can predict what happens to complex gene networks when individual       genes are missing or dialed up more than usual. Such genetic networks       play key roles in early embryonic development, guiding stem cells to       form specific cell types that then build tissues and organs. Mapping       the roles of single genes in these networks is key to understanding       healthy development and finding ways to regrow damaged cells and       tissues. Likewise, understanding genetic errors could provide insight       into birth defects, miscarriage or even cancer.                     ==========================================================================       Such genetic experiments -- typically conducted in the laboratory       in animal models such as mice and zebrafish -- have been a mainstay       of developmental biology research for decades. Much can be learned       about a gene's function in animal studies in which a gene is missing       or overexpressed, but these experiments are also expensive and       time-consuming.              In contrast, the newly developed software called CellOracle -- described       Feb. 8 in the journal Nature -- can model hundreds of genetic experiments       in a matter of minutes, helping scientists identify key genes that play       important roles in development but that may have been missed by older,       slower techniques.              CellOracle is open source, with the code and information about the       software available at thislink.              "The scientific community has collected enough data from animal       experiments that we now can do more than observe biology happening --       we can build computer models of how genes interact with each other       and predict what will happen when one gene is missing," said senior       author Samantha A. Morris, PhD, an associate professor of developmental       biology and of genetics. "And we can do this without any experimental       intervention. Once we identify an important gene, we still need to do       the lab experiments to verify the finding. But this computational method       helps scientists narrow down which genes are most important." CellOracle,       which was included in a recent technology feature in the journal Nature,       is one of a number of relatively new software systems designed to model       insights into cellular gene regulation. Rather than simply identify the       networks, CellOracle is unique in its ability to let researchers test       out what happens when a network is disrupted in a specific way.              Morris and her team harnessed the well-known developmental processes of       blood cell formation in mice and humans and embryonic development in       zebrafish to validate that CellOracle works properly. Their studies,       in collaboration with the lab of co-author and zebrafish development       expert Lilianna Solnica-Krezel, PhD, the Alan A. and Edith L. Wolff       Distinguished Professor and head of the Department of Developmental       Biology, also uncovered new roles for certain genes in zebrafish       development that had not previously been identified.              And in a related paper online in the journal Stem Cell Reports, Morris       and her colleagues used CellOracle to predict what happens when certain       genes are dialed up beyond their usual expression levels.              "We found that if we dialed up two specific genes, we can transform skin       cells into a type of cell that can repair damaged intestine and liver,"       Morris said.              "In terms of regenerative medicine, these predictive tools are valuable       in modeling how we can reprogram cells into becoming the types of cells       that can promote healing after injury or disease." According to Morris,       most laboratory methods for converting stem cells into different cell       types, such as blood cells or liver cells, are inefficient.              Maybe 2% of the cells arrive at the desired destination. Tools like       CellOracle can help scientist identify what factors should be added to       the cocktail to guide more cells into the desired cell type, such as       those capable repairing the gut and liver.              At present, CellOracle can model cell identity in more than 10 different       species, including humans, mice, zebrafish, yeast, chickens, Guinea pigs,       rats, fruit flies, roundworms, the Arabidopsis plant and two species       of frog.              "We get a lot of requests to add different species," Morris said. "We're       working on adding axolotl, which is a type of salamander. They are cool       animals for studying regeneration because of their ability to regrow       entire limbs and other complex organs and tissues."        * RELATED_TOPICS        o Health_&_Medicine        # Stem_Cells # Genes # Brain_Tumor        o Plants_&_Animals        # Developmental_Biology # Genetics # Biotechnology        o Computers_&_Math        # Computer_Modeling # Software # Computer_Programming        * RELATED_TERMS        o BRCA1 o BRCA2 o Cancer o Gene_therapy o Gene o        Introduction_to_genetics o Genetic_code o Human_genome              ==========================================================================       Story Source: Materials provided by       Washington_University_School_of_Medicine. Original written by Julia       Evangelou Strait. Note: Content may be edited for style and length.                     ==========================================================================       Journal References:        1. Kenji Kamimoto, Blerta Stringa, Christy M. Hoffmann, Kunal Jindal,        Lilianna Solnica-Krezel, Samantha A. Morris. Dissecting        cell identity via network inference and in silico gene        perturbation. Nature, 2023; DOI: 10.1038/s41586-022-05688-9        2. Kenji Kamimoto, Mohd Tayyab Adil, Kunal Jindal, Christy M. Hoffmann,        Wenjun Kong, Xue Yang, Samantha A. Morris. Gene regulatory network        reconfiguration in direct lineage reprogramming. Stem Cell Reports,        2023; 18 (1): 97 DOI: 10.1016/j.stemcr.2022.11.010       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/02/230210185147.htm              --- up 49 weeks, 4 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 226/30 227/114 229/110       SEEN-BY: 229/111 112 113 114 307 317 400 426 428 470 664 700 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca