Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 7,515 of 8,931    |
|    ScienceDaily to All    |
|    'We're not all that different': Study ID    |
|    08 Feb 23 21:30:28    |
      MSGID: 1:317/3 63e476f0       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        'We're not all that different': Study IDs bacterial weapons that could       be harnessed to treat human disease         Discovery of ancient immune-fighting machinery paves way toward more       'CRISPR'-like technologies                Date:        February 8, 2023        Source:        University of Colorado at Boulder        Summary:        When it comes to fighting off invaders, bacteria operate in a        remarkably similar way to human cells, possessing the same core        machinery required to switch immune pathways on and off, according        to new research.                      Facebook Twitter Pinterest LinkedIN Email       FULL STORY       ==========================================================================       When it comes to fighting off invaders, bacteria operate in a remarkably       similar way to human cells, possessing the same core machinery required       to switch immune pathways on and off, according to new University of       Colorado Boulder research.                     ==========================================================================       The study, published Feb. 8 in the journal Nature, also sheds light       on how that shared, ancient machinery -- a cluster of enzymes known as       ubiquitin transferases -- works.              Better understanding, and potentially reprogramming this machine,       could ultimately pave the way to novel approaches for treating a host of       human diseases, from autoimmune disorders like Rheumatoid arthritis and       Crohn's disease to neurodegenerative diseases like Parkinson's disease,       the authors said.              "This study demonstrates that we're not all that different from bacteria,"       said senior author Aaron Whiteley, an assistant professor in the       Department of Biochemistry. "We can learn a lot about how the human body       works by studying these bacterial processes." The next CRISPR? The study       is not the first to showcase the lessons bacteria can teach humans.              Mounting evidence suggests that portions of the human immune system       may have originated in bacteria, with evolution yielding more complex       iterations of bacterial virus-fighting tools across plant and animal       kingdoms.              In 2020, University of California Berkeley biochemist Jennifer Doudna       won the Nobel Prize for CRISPR, a gene-editing tool that repurposes       another obscure system bacteria use to fight off their own viruses,       known as phages.              The buzz around CRISPR ignited renewed scientific interest in the role       proteins and enzymes play in anti-phage immune response.              "Over the past three to five years people have realized it doesn't end       with CRISPR. The potential is so much bigger," said Whiteley.              Missing link in evolutionary history For the study, Whiteley and       co-first author Hannah Ledvina, a Jane Coffin Childs Postdoctoral       Fellow in the department, collaborated with University of California       San Diego biochemists to learn more about a protein called cGAS (cyclic       GMP-AMP synthase), previously shown to be present in both humans and,       in a simpler form, bacteria.              In bacteria and in humans, cGAS is critical for mounting a downstream       defense when the cell senses a viral invader. But what regulates this       process in bacteria was previously unknown.              Using an ultra-high-resolution technique called cryo-electron microscopy       alongside other genetic and biochemical experiments, Whiteley's team took       an up-close look at the structure of cGAS's evolutionary predecessor in       bacteria and discovered additional proteins that bacteria use to help       cGAS defend the cell from viral attack.              Specifically, they discovered that bacteria modify their cGAS using a       streamlined "all-in-one version" of ubiquitin transferase, a complex       collection of enzymes that in humans control immune signaling and other       critical cellular processes.              Because bacteria are easier to genetically manipulate and study than       human cells, this discovery opens a new world of opportunity for research,       said Ledvina.              "The ubiquitin transferases in bacteria are a missing link in our       understanding of the evolutionary history of these proteins." Editing       proteins The study also revealed just how this machine works, identifying       two key components -- proteins called Cap2 and Cap3 (CD-NTase-associated       protein 2 and 3) -- which serve, respectively, as on and off switches       for the cGAS response.              Whiteley explained that in addition to playing a key role in immune       response, ubiquitin in humans can serve as a sort of marker for       cellular garbage, directing excess or old proteins to be broken down and       destroyed. When that system misfires due to mutations in the machine,       proteins can build up and diseases, such as Parkinson's, can occur.              The authors stress that far more research is needed but the discovery       opens exciting scientific doors. Just as scientists adapted the ancient       bacterial defense system CRISPR into scissor-like biotechnology that       can snip mutations out of DNA, Whiteley believes pieces of the bacterial       ubiquitin transferase machine -- namely Cap3, the "off switch" -- could       ultimately be programmed to edit out problem proteins and treat disease       in humans.              He and his team, with the help of Venture Partners at CU Boulder, have       already filed for intellectual property protection, and they're moving       forward with more research.              "The more we understand about ubiquitin transferases and how they evolved,       the better equipped the scientific community is to target these proteins       therapeutically,"Whiteley said. "This study provides really clear evidence       that the machines in our body that are important for just maintaining       the cell started out in bacteria doing some really exciting things."        * RELATED_TOPICS        o Health_&_Medicine        # Human_Biology # Immune_System # Infectious_Diseases        # Lymphoma        o Plants_&_Animals        # Bacteria # CRISPR_Gene_Editing #        Biotechnology_and_Bioengineering # Biology        * RELATED_TERMS        o Immune_system o Great_Ape_language o Pathogen o T_cell o        HIV o Transplant_rejection o Adult_stem_cell o White_blood_cell              ==========================================================================       Story Source: Materials provided by       University_of_Colorado_at_Boulder. Original written by Lisa       Marshall. Note: Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Hannah E. Ledvina, Qiaozhen Ye, Yajie Gu, Ashley E. Sullivan,        Yun Quan,        Rebecca K. Lau, Huilin Zhou, Kevin D. Corbett, Aaron T. Whiteley. An        E1- E2 fusion protein primes antiviral immune signalling in        bacteria. Nature, 2023; DOI: 10.1038/s41586-022-05647-4       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/02/230208191716.htm              --- up 49 weeks, 2 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 226/30 227/114 229/110       SEEN-BY: 229/111 112 113 114 307 317 400 426 428 470 664 700 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca