Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 7,464 of 8,931    |
|    ScienceDaily to All    |
|    Human brain organoids respond to visual     |
|    02 Feb 23 21:30:22    |
      MSGID: 1:317/3 63dc8df2       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Human brain organoids respond to visual stimuli when transplanted into       adult rats                Date:        February 2, 2023        Source:        Cell Press        Summary:        Researchers show that brain organoids -- clumps of lab-grown        neurons - - can integrate with rat brains and respond to visual        stimulation like flashing lights.                      Facebook Twitter Pinterest LinkedIN Email       FULL STORY       ==========================================================================       In a study publishing in the journal Cell Stem Cell on February 2,       researchers show that brain organoids -- clumps of lab-grown neurons --       can integrate with rat brains and respond to visual stimulation like       flashing lights.                     ==========================================================================       Decades of research has shown that we can transplant individual human       and rodent neurons into rodent brains, and, more recently, it has been       demonstrated that human brain organoids can integrate with developing       rodent brains.              However, whether these organoid grafts can functionally integrate with       the visual system of injured adult brains has yet to be explored.              "We focused on not just transplanting individual cells, but       actually transplanting tissue," says senior author H. Isaac Chen, a       physician and Assistant Professor of Neurosurgery at the University of       Pennsylvania. "Brain organoids have architecture; they have structure       that resembles the brain. We were able to look at individual neurons       within this structure to gain a deeper understanding of the integration       of transplanted organoids." The researchers cultivated human stem       cell-derived neurons in the lab for around 80 days before grafting them       into the brains of adult rats that had sustained injuries to their visual       cortex. Within three months, the grafted organoids had integrated with       their host's brain: becoming vascularized, growing in size and number,       sending out neuronal projections, and forming synapses with the host's       neurons.              The team made use of fluorescent-tagged viruses that hop along synapses,       from neuron to neuron, to detect and trace physical connections between       the organoid and brain cells of the host rat. "By injecting one of these       viral tracers into the eye of the animal, we were able to trace the       neuronal connections downstream from the retina," says Chen. "The tracer       got all the way to the organoid." Next, the researchers used electrode       probes to measure the activity of individual neurons within the organoid       when the animals were exposed to flashing lights and alternating white       and black bars. "We saw that a good number of neurons within the organoid       responded to specific orientations of light, which gives us evidence that       these organoid neurons were able to not just integrate with the visual       system, but they were able to adopt very specific functions of the visual       cortex." The team was surprised by the degree to which the organoids were       able to integrate within only three months. "We were not expecting to see       this degree of functional integration so early," says Chen. "There have       been other studies looking at transplantation of individual cells that       show that even 9 or 10 months after you transplant human neurons into       a rodent, they're still not completely mature." "Neural tissues have       the potential to rebuild areas of the injured brain," says Chen. "We       haven't worked everything out, but this is a very solid first step.              Now, we want to understand how organoids could be used in other areas       of the cortex, not just the visual cortex, and we want to understand       the rules that guide how organoid neurons integrate with the brain so       that we can better control that process and make it happen faster."        * RELATED_TOPICS        o Health_&_Medicine        # Nervous_System # Stem_Cells # Brain_Tumor        o Mind_&_Brain        # Neuroscience # Brain_Injury # Brain-Computer_Interfaces        o Plants_&_Animals        # Mice # Biology # Biotechnology        * RELATED_TERMS        o Brain o Sensory_neuron o Brown_Rat o Retina o        Multiple_sclerosis o Social_cognition o Neural_network o        Optic_nerve              ==========================================================================       Story Source: Materials provided by Cell_Press. Note: Content may be       edited for style and length.                     ==========================================================================       Journal Reference:        1. Dennis Jgamadze, James T. Lim, Zhijian Zhang, Paul M. Harary, James        Germi, Kobina Mensah-Brown, Christopher D. Adam, Ehsan Mirzakhalili,        Shikha Singh, Jiahe Ben Gu, Rachel Blue, Mehek Dedhia, Marissa Fu,        Fadi Jacob, Xuyu Qian, Kimberly Gagnon, Matthew Sergison, Oceane        Fruchet, Imon Rahaman, Huadong Wang, Fuqiang Xu, Rui Xiao, Diego        Contreras, John A.               Wolf, Hongjun Song, Guo-li Ming, Han-Chiao Isaac Chen. Structural        and functional integration of human forebrain organoids with the        injured adult rat visual system. Cell Stem Cell, 2023; 30 (2):        137 DOI: 10.1016/ j.stem.2023.01.004       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/02/230202112654.htm              --- up 48 weeks, 3 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 226/30 227/114 229/110       SEEN-BY: 229/111 112 113 114 307 317 400 426 428 470 664 700 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca