Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 7,434 of 8,931    |
|    ScienceDaily to All    |
|    Thin, lightweight layer provides radiati    |
|    31 Jan 23 21:30:22    |
      MSGID: 1:317/3 63d9eae3       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Thin, lightweight layer provides radiation barrier for perovskites in       space, protection from elements on Earth                Date:        January 31, 2023        Source:        DOE/National Renewable Energy Laboratory        Summary:        An ultrathin protective coating proves sufficient to protect        a perovskite solar cell from the harmful effects of space and        harden it against environmental factors on Earth, according to        newly published research.                      Facebook Twitter Pinterest LinkedIN Email       FULL STORY       ==========================================================================       An ultrathin protective coating proves sufficient to protect a perovskite       solar cell from the harmful effects of space and harden it against       environmental factors on Earth, according to newly published research       from the U.S.              Department of Energy's National Renewable Energy Laboratory (NREL).                     ==========================================================================       Funded by the U.S. Department of Defense's Operational Energy Capability       Improvement Fund (OECIF), the NREL research was done for the Air Force       Research Laboratory (AFRL) to develop low-cost innovative energy sources       for powering the armed forces worldwide.              The research is the latest effort to determine the effectiveness of       perovskites for use in space applications, where it would be exposed to       protons, alpha particles, atomic oxygen, and other stressors. The ability       to use perovskites to generate power in space is enticing because they       offer a lower-cost and lightweight option to other technologies with the       potential for achieving efficiencies similar to those of current space       PV technologies.              Just as on Earth, perovskite solar cells need to have suitable durability.              However, the environment in space is significantly different. While the       biggest challenges on Earth are related to weather, in space perovskites       must address the problems that come from radiation bombardment and       extreme temperature swings. Perovskites show signs of better tolerance       to radiation than many other solar cells, but plenty of testing remains       to be conducted.              Researchers last year ran simulations to demonstrate how exposure       to radiation in space would affect perovskites. They determined the       next-generation technology would work in space but pointed out the need       to encapsulate the cell in some way to provide added protection.              In the follow-up research, Ahmad Kirmani, lead author of the latest       Nature Energy paper, said simulations demonstrated a micron-thick layer       of silicon oxide would preserve the efficiency and increase the lifetime       of perovskite solar cells in space. As a comparison, the micron-thick       layer is about 100 times thinner than a typical human hair.              Kirmani said the silicon oxide layer could reduce the weight of       conventional radiation barriers used for other solar cells by more than       99% and serves as a first step toward designing lightweight and low-cost       packaging for perovskites.              High-energy protons travel through perovskite solar cells without causing       much harm. Low-energy protons, however, are more abundant in space and       wreak more havoc on perovskite cells by knocking atoms out of place       and causing efficiency levels to steadily decline. The lower energy       protons interact with matter much more readily and the addition of the       silicon oxide layer protected the perovskite from damage even from the       low-energy protons.              "We thought it would be impossible for the silicon oxide to provide       protection against fully penetrating long-range particles such as the       high-energy protons and alpha particles," Kirmani said. "However, the       oxide layer turned out to be a surprisingly good barrier against those as       well." The results are detailed in the paper "Metal oxide barrier layers       for terrestrial and space perovskite photovoltaics." The co-authors are       David Ostrowski, Kaitlyn VanSant, Rosemary Bramante, Karen Heinselman,       Jinhui Tong, Bart Stevens, William Nemeth, Kai Zhu, and Joseph Luther,       from NREL; and several key collaborators who work with the team from       the University of North Texas and the University of Oklahoma. VanSant       holds the unique position of being a postdoctoral researcher at NASA       who conducts research at NREL.              Exposure to a stream of low-energy protons caused unprotected perovskite       solar cells to lose only about 15% of their initial efficiency, the       researchers found. A larger concentration of particles destroyed the       cells, while the protected perovskites demonstrated what the scientists       described as "a remarkable resilience." With the simple barrier, the       cells showed no damage.              In addition to making the cells more resilient in space, the researchers       also tested how the barrier could provide benefit in more conventional       applications.              They then exposed the perovskite solar cells to an uncontrolled       moisture and temperature environment for several days to mimic storage       conditions. The protected cells retained their initial 19% efficiency,       while the unprotected cells showed significant degradation, from 19.4%       to 10.8%. The oxide layer also provided protection when other perovskite       compositions typically more sensitive to moisture were exposed to water.              Further, the perovskite solar cells were subjected to a test chamber where       they were bombarded with ultraviolet photons similar to the environment       at low-Earth orbit. The photons interacted with oxygen to create atomic       oxygen. The unprotected cells were destroyed after eight minutes. The       protected cells retained their initial efficiency after 20 minutes and       only had a slight drop after 30 minutes.              The simulations and experiments revealed that by reducing the damage       from radiation, the lifetime of the protected solar cells used in Earth's       orbits and deep space would be increased from months to years.              "Power conversion efficiency and operational stability of perovskite       solar cells have been the two primary focus areas for the community so       far," he said.              "We have made a lot of progress and I think we have come far to the       point that we might be pretty close to hitting those targets needed       for industrialization.              However, to really enable this market entry, packaging is the next       target." Because perovskite solar cells can be deposited onto a flexible       substrate, the emerging technology, coupled with the protective layer       of silicon oxide, allows its use for various terrestrial applications       such as powering drones.              NREL is the U.S. Department of Energy's primary national laboratory for       renewable energy and energy efficiency research and development. NREL       is operated for DOE by the Alliance for Sustainable Energy LLC.               * RELATED_TOPICS        o Space_&_Time        # Sun # Solar_Flare # Northern_Lights        o Matter_&_Energy        # Solar_Energy # Graphene # Energy_Technology        o Earth_&_Climate        # Energy_and_the_Environment # Geomagnetic_Storms #        Renewable_Energy        * RELATED_TERMS        o Solar_cell o Greenhouse_effect o        Environmental_impact_assessment o Earth's_atmosphere o        History_of_Earth o Geomagnetic_storm o Planet o Solar_eclipse              ==========================================================================       Story Source: Materials provided by       DOE/National_Renewable_Energy_Laboratory. Note: Content may be edited       for style and length.                     ==========================================================================       Journal Reference:        1. Ahmad R. Kirmani, David P. Ostrowski, Kaitlyn T. VanSant, Todd        A. Byers,        Rosemary C. Bramante, Karen N. Heinselman, Jinhui Tong, Bart        Stevens, William Nemeth, Kai Zhu, Ian R. Sellers, Bibhudutta Rout,        Joseph M.               Luther. Metal oxide barrier layers for terrestrial and        space perovskite photovoltaics. Nature Energy, 2023; DOI:        10.1038/s41560-022-01189-1       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/01/230131183137.htm              --- up 48 weeks, 1 day, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 226/30 227/114 229/110       SEEN-BY: 229/111 112 113 114 307 317 400 426 428 470 664 700 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca