Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 7,425 of 8,931    |
|    ScienceDaily to All    |
|    New method to control electron spin pave    |
|    30 Jan 23 21:30:18    |
      MSGID: 1:317/3 63d89971       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        New method to control electron spin paves the way for efficient quantum       computers         The method, developed by University of Rochester scientists, overcomes       the limitations of electron spin resonance                Date:        January 30, 2023        Source:        University of Rochester        Summary:        Researchers have developed a new method for manipulating information        in quantum systems by controlling the spin of electrons in silicon        quantum dots. The results provide a promising new mechanism for        control of qubits, which could pave the way for the development        of a practical, silicon-based quantum computer.                      Facebook Twitter Pinterest LinkedIN Email       FULL STORY       ==========================================================================       Quantum science has the potential to revolutionize modern technology with       more efficient computers, communication, and sensing devices. Challenges       remain in achieving these technological goals, however, including how       to precisely manipulate information in quantum systems.                     ==========================================================================       In a paper published in Nature Physics, a group of researchers from the       University of Rochester, including John Nichol, an associate professor of       physics, outlines a new method for controlling electron spin in silicon       quantum dots -- tiny, nanoscale semiconductors with remarkable properties       -- as a way to manipulate information in a quantum system.              "The results of the study provide a promising new mechanism for coherent       control of qubits based on electron spin in semiconductor quantum dots,       which could pave the way for the development of a practical silicon-based       quantum computer," Nichol says.              Using quantum dots as qubits A regular computer consists of billions       of transistors, called bits. Quantum computers, on the other hand,       are based on quantum bits, also known as qubits.              Unlike ordinary transistors, which can be either "0" (off) or "1" (on),       qubits are governed by the laws of quantum mechanics and can be both       "0" and "1" at the same time.              Scientists have long considered using silicon quantum dots as qubits;       controlling the spin of electrons in quantum dots would offer a way       to manipulate the transfer of quantum information. Every electron in a       quantum dot has intrinsic magnetism, like a tiny bar magnet. Scientists       call this "electron spin" -- the magnetic moment associated with each       electron -- because each electron is a negatively charged particle that       behaves as though it were rapidly spinning, and it is this effective       motion that gives rise to the magnetism.              Electron spin is a promising candidate for transferring, storing,       and processing information in quantum computing because it offers long       coherence times and high gate fidelities and is compatible with advanced       semiconductor manufacturing techniques. The coherence time of a qubit       is the time before the quantum information is lost due to interactions       with a noisy environment; long coherence means a longer time to perform       computations. High gate fidelity means that the quantum operation       researchers are trying to perform is performed exactly as they want.              One major challenge in using silicon quantum dots as qubits, however,       is controlling electron spin.              Controlling electron spin The standard method for controlling electron       spin is electron spin resonance (ESR), which involves applying oscillating       radiofrequency magnetic fields to the qubits. However, this method       has several limitations, including the need to generate and precisely       control the oscillating magnetic fields in cryogenic environments,       where most electron spin qubits are operated. Typically, to generate       oscillating magnetic fields, researchers send a current through a wire,       and this generates heat, which can disturb cryogenic environments.              Nichol and his colleagues outline a new method for controlling       electron spin in silicon quantum dots that does not rely on oscillating       electromagnetic fields.              The method is based on a phenomenon called "spin-valley coupling,"       which occurs when electrons in silicon quantum dots transition between       different spin and valley states. While the spin state of an electron       refers to its magnetic properties, the valley state refers to a different       property related to the electron's spatial profile.              The researchers apply a voltage pulse to harness the spin-valley       coupling effect and manipulate the spin and valley states, controlling       the electron spin.              "This method of coherent control, by spin-valley coupling, allows for       universal control over qubits, and can be performed without the need       of oscillating magnetic fields, which is a limitation of ESR," Nichol       says. "This allows us a new pathway for using silicon quantum dots to       manipulate information in quantum computers."        * RELATED_TOPICS        o Matter_&_Energy        # Spintronics # Physics # Quantum_Physics #        Quantum_Computing        o Computers_&_Math        # Spintronics_Research # Quantum_Computers #        Computers_and_Internet # Encryption        * RELATED_TERMS        o Quantum_entanglement o Quantum_computer o Quantum_dot        o Quantum_number o Silicon o Electron_configuration o        Quantum_tunnelling o Atomic_orbital              ==========================================================================       Story Source: Materials provided by University_of_Rochester. Original       written by Lindsey Valich. Note: Content may be edited for style and       length.                     ==========================================================================       Journal Reference:        1. Xinxin Cai, Elliot J. Connors, Lisa F. Edge, John        M. Nichol. Coherent        spin-valley oscillations in silicon. Nature Physics, 2023; DOI:        10.1038/ s41567-022-01870-y       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/01/230130144803.htm              --- up 48 weeks, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 226/30 227/114 229/110       SEEN-BY: 229/111 112 113 114 307 317 400 426 428 470 664 700 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca