Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 7,418 of 8,931    |
|    ScienceDaily to All    |
|    Machine learning identifies drugs that c    |
|    30 Jan 23 21:30:18    |
      MSGID: 1:317/3 63d8995c       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Machine learning identifies drugs that could potentially help smokers       quit                Date:        January 30, 2023        Source:        Penn State        Summary:        Medications like dextromethorphan, used to treat coughs caused by        cold and flu, could potentially be repurposed to help people quit        smoking cigarettes, according to a new study. Researchers developed        a novel machine learning method, where computer programs analyze        data sets for patterns and trends, to identify the drugs and said        that some of them are already being tested in clinical trials.                      Facebook Twitter Pinterest LinkedIN Email       FULL STORY       ==========================================================================       Medications like dextromethorphan, used to treat coughs caused by cold       and flu, could potentially be repurposed to help people quit smoking       cigarettes, according to a study by Penn State College of Medicine and       University of Minnesota researchers. They developed a novel machine       learning method, where computer programs analyze data sets for patterns       and trends, to identify the drugs and said that some of them are already       being tested in clinical trials.                     ==========================================================================       Cigarette smoking is risk factor for cardiovascular disease, cancer and       respiratory diseases and accounts for nearly half a million deaths in       the United States each year. While smoking behaviors can be learned and       unlearned, genetics also plays a role in a person's risk for engaging       in those behaviors.              The researchers found in a prior study that people with certain genes       are more likely to become addicted to tobacco.              Using genetic data from more than 1.3 million people, Dajiang Liu,       Ph.D., professor of public health sciences, and of biochemistry and       molecular biology and Bibo Jiang, Ph.D., assistant professor of public       health sciences, co-led a large multi-institution study that used machine       learning to study these large data sets -- which include specific data       about a person's genetics and their self-reported smoking behaviors.              The researchers identified more than 400 genes that were related to       smoking behaviors. Since a person can have thousands of genes, they       had to determine why some of those genes were connected to smoking       behaviors. Genes that carry instructions for the production of nicotine       receptors or are involved in signaling for the hormone dopamine,       which make people feel relaxed and happy, had easy-to-understand       connections. For the remaining genes, the research team had to determine       the role each plays in biological pathways and using that information,       figured out what medications are already approved for modifying those       existing pathways.              Most of the genetic data in the study is from people with European       ancestries, so the machine learning model had to be tailored to not only       study that data, but also a smaller data set of around 150,000 people       with Asian, African or American ancestries.              Liu and Jiang worked with more than 70 scientists on the project. They       identified at least eight medications that could potentially be       repurposed for smoking cessation, such as dextromethorphan, which is       commonly used to treat coughs caused by cold and flu, and galantamine,       which is used to treat Alzheimer's disease. The study was published in       Nature Geneticstoday, Jan. 26.              "Re-purposing drugs using big biomedical data and machine learning       methods can save money, time and resources," said Liu, a Penn State       Cancer Institute and Penn State Huck Institutes of the Life Sciences       researcher. "Some of the drugs we identified are already being tested       in clinical trials for their ability to help smokers quit, but there       are still other possible candidates that could be explored in future       research." While the machine learning method was able to incorporate a       small set of data from diverse ancestries, Jiang said it's still important       for researchers to build out genetic databases from individuals with       diverse ancestries.              "This will only improve the accuracy with which machine learning models       can identify individuals at risk for drug misuse and determine potential       biological pathways that can be targeted for helpful treatments."       Other College of Medicine authors on the project include Fang Chen,       Xingyan Wang, Dylan Weissenkampen, Chachrit, Khunsriraksakul, Lina Yang,       Renan Sauteraud, Olivia Marx and Karine Moussa. They declare no conflicts       of interest.              This research was supported by The National Institutes of Health (grants       R01HG008983, R56HG011035, R01HG011035, R56HG012358, R01GM126479,       R21AI160138 and R03OD032630) and Penn State College of Medicine's       Biomedical Informatics and Artificial Intelligence Program in the       Strategic Plan. The views of the authors do not necessarily represent       the views of the funders.               * RELATED_TOPICS        o Health_&_Medicine        # Smoking # Medical_Topics # Personalized_Medicine        # Public_Health_Education # Genes # Teen_Health #        Diseases_and_Conditions # Healthy_Aging        * RELATED_TERMS        o Pharmaceutical_company o Tobacco_smoking o        Personalized_medicine o Computational_neuroscience o Neurology        o Clinical_trial o Avian_flu o Virus              ==========================================================================       Story Source: Materials provided by Penn_State. Original written by       Zachary Sweger. Note: Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Fang Chen, Xingyan Wang, Seon-Kyeong Jang, Bryan C. Quach, J. Dylan        Weissenkampen, Chachrit Khunsriraksakul, Lina Yang, Renan Sauteraud,        Christine M. Albert, Nicholette D. D. Allred, Donna K. Arnett,        Allison E.               Ashley-Koch, Kathleen C. Barnes, R. Graham Barr, Diane M. Becker,        Lawrence F. Bielak, Joshua C. Bis, John Blangero, Meher Preethi        Boorgula, Daniel I. Chasman, Sameer Chavan, Yii-Der I. Chen,        Lee-Ming Chuang, Adolfo Correa, Joanne E. Curran, Sean P. David,        Lisa de las Fuentes, Ranjan Deka, Ravindranath Duggirala,        Jessica D. Faul, Melanie E. Garrett, Sina A. Gharib, Xiuqing Guo,        Michael E. Hall, Nicola L. Hawley, Jiang He, Brian D. Hobbs,        John E. Hokanson, Chao A. Hsiung, Shih-Jen Hwang, Thomas M. Hyde,        Marguerite R. Irvin, Andrew E. Jaffe, Eric O. Johnson, Robert        Kaplan, Sharon L. R. Kardia, Joel D. Kaufman, Tanika N. Kelly,        Joel E.               Kleinman, Charles Kooperberg, I-Te Lee, Daniel Levy, Sharon        M. Lutz, Ani W. Manichaikul, Lisa W. Martin, Olivia Marx, Stephen        T. McGarvey, Ryan L.               Minster, Matthew Moll, Karine A. Moussa, Take Naseri, Kari E. North,        Elizabeth C. Oelsner, Juan M. Peralta, Patricia A. Peyser, Bruce M.               Psaty, Nicholas Rafaels, Laura M. Raffield, Muagututi'a Sefuiva        Reupena, Stephen S. Rich, Jerome I. Rotter, David A. Schwartz,        Aladdin H. Shadyab, Wayne H-H. Sheu, Mario Sims, Jennifer A. Smith,        Xiao Sun, Kent D. Taylor, Marilyn J. Telen, Harold Watson, Daniel        E. Weeks, David R. Weir, Lisa R.               Yanek, Kendra A. Young, Kristin L. Young, Wei Zhao, Dana B. Hancock,        Bibo Jiang, Scott Vrieze, Dajiang J. Liu. Multi-ancestry        transcriptome-wide association analyses yield insights into        tobacco use biology and drug repurposing. Nature Genetics, 2023;        DOI: 10.1038/s41588-022-01282-x       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/01/230130130517.htm              --- up 48 weeks, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 226/30 227/114 229/110       SEEN-BY: 229/111 112 113 114 307 317 400 426 428 470 664 700 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca