Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 6,075 of 8,931    |
|    ScienceDaily to All    |
|    Scientists observe quantum speed-up in o    |
|    05 May 22 22:30:40    |
      MSGID: 1:317/3 6274a4d9       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Scientists observe quantum speed-up in optimization problems                Date:        May 5, 2022        Source:        Harvard University        Summary:        Scientists have demonstrated a breakthrough application of        neutral-atom quantum processors to solve problems of practical use.                            FULL STORY       ==========================================================================       A collaboration between Harvard University with scientists at QuEra       Computing, MIT, University of Innsbruck and other institutions has       demonstrated a breakthrough application of neutral-atom quantum processors       to solve problems of practical use.                     ==========================================================================       The study was co-led by Mikhail Lukin, the George Vasmer Leverett       Professor of Physics at Harvard and co-director of the Harvard Quantum       Initiative, Markus Greiner, George Vasmer Leverett Professor of Physics,       and Vladan Vuletic, Lester Wolfe Professor of Physics at MIT. Titled       "Quantum Optimization of Maximum Independent Set using Rydberg Atom       Arrays," was published on May 5th, 2022, in Science Magazine.              Previously, neutral-atom quantum processors had been proposed to       efficiently encode certain hard combinatorial optimization problems. In       this landmark publication, the authors not only deploy the first       implementation of efficient quantum optimization on a real quantum       computer, but also showcase unprecedented quantum hardware power.              The calculations were performed on Harvard's quantum processor of 289       qubits operating in the analog mode, with effective circuit depths up       to 32. Unlike in previous examples of quantum optimization, the large       system size and circuit depth used in this work made it impossible to       use classical simulations to pre- optimize the control parameters. A       quantum-classical hybrid algorithm had to be deployed in a closed loop,       with direct, automated feedback to the quantum processor.              This combination of system size, circuit depth, and outstanding       quantum control culminated in a quantum leap: problem instances were       found with empirically better-than-expected performance on the quantum       processor versus classical heuristics. Characterizing the difficulty       of the optimization problem instances with a "hardness parameter,"       the team identified cases that challenged classical computers, but       that were more efficiently solved with the neutral- atom quantum       processor. A super-linear quantum speed-up was found compared to a       class of generic classical algorithms. QuEra's open-source packages       GenericTensorNetworks.jl and Bloqade.jl were instrumental in discovering       hard instances and understanding quantum performance.              "A deep understanding of the underlying physics of the quantum algorithm       as well as the fundamental limitations of its classical counterpart       allowed us to realize ways for the quantum machine to achieve a       speedup," says Madelyn Cain, Harvard graduate student and one of the       lead authors. The importance of match- making between problem and quantum       hardware is central to this work: "In the near future, to extract as much       quantum power as possible, it is critical to identify problems that can       be natively mapped to the specific quantum architecture, with little to       no overhead," said Shengtao Wang, Senior Scientist at QuEra Computing and       one of the coinventors of the quantum algorithms used in this work, "and       we achieved exactly that in this demonstration." The "maximum independent       set" problem, solved by the team, is a paradigmatic hard task in computer       science and has broad applications in logistics, network design, finance,       and more. The identification of classically challenging problem instances       with quantum-accelerated solutions paves the path for applying quantum       computing to cater to real-world industrial and social needs.              "These results represent the first step towards bringing useful quantum       advantage to hard optimization problems relevant to multiple industries.,"       added Alex Keesling CEO of QuEra Computing and co-author on the published       work.              "We are very happy to see quantum computing start to reach the necessary       level of maturity where the hardware can inform the development of       algorithms beyond what can be predicted in advance with classical compute       methods. Moreover, the presence of a quantum speedup for hard problem       instances is extremely encouraging. These results help us develop better       algorithms and more advanced hardware to tackle some of the hardest,       most relevant computational problems."              ==========================================================================       Story Source: Materials provided by Harvard_University. Note: Content       may be edited for style and length.                     ==========================================================================       Journal Reference:        1. S. Ebadi, A. Keesling, M. Cain, T. T. Wang, H. Levine, D. Bluvstein,        G.               Semeghini, A. Omran, J.-G. Liu, R. Samajdar, X.-Z. Luo,        B. Nash, X. Gao, B. Barak, E. Farhi, S. Sachdev, N. Gemelke,        L. Zhou, S. Choi, H. Pichler, S.-T. Wang, M. Greiner, V. Vuletic,        M. D. Lukin. Quantum optimization of maximum independent set using        Rydberg atom arrays. Science, 2022; DOI: 10.1126/science.abo6587       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2022/05/220505150340.htm              --- up 9 weeks, 3 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 129/330 331 153/7715 218/700       SEEN-BY: 229/110 111 317 400 426 428 470 664 700 292/854 298/25 305/3       SEEN-BY: 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca