Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 6,073 of 8,931    |
|    ScienceDaily to All    |
|    Patient-derived micro-organospheres enab    |
|    05 May 22 22:30:40    |
      MSGID: 1:317/3 6274a4d3       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Patient-derived micro-organospheres enable cutting-edge precision       oncology                Date:        May 5, 2022        Source:        Terasaki Institute for Biomedical Innovation        Summary:        Scientists develop micro-organospheric models to predict therapeutic        response accurately and rapidly, enabling cutting-edge precision        oncology.                            FULL STORY       ==========================================================================       A patient's tumor cell response to therapy is affected by many factors,       including genetic alterations, tumor microenvironment, and intratumoral       heterogeneity. This can make it extremely difficult to determine optimum       treatment regimens, amidst the ever-increasing number of drug candidates       and cancer therapies that have recently been developed. Added to these       challenges is the limited timeframe in which treatment decisions must       be made after diagnosis -- frequently on the order of two weeks or less.                     ==========================================================================       Shortcomings of existing oncogenic models make them unsuitable for       clinical use. Patient-derived tumor cell lines change when sub-cultured,       rendering them inaccurate as tumor models, and models made from       xenografts -- patient tumor cells injected into immuno-deficient mice       -- retain their characteristics but are time-consuming and costly to       produce. Patient-derived organoids, miniaturized 3D versions of tumor       tissues, lose the patient tumor microenvironment during sub-culturing,       and production of these organoids in a timely enough manner for clinical       decision making remains unattainable.              These challenges have been addressed in a multi-organizational       collaborative effort, which included scientists from the Terasaki       Institute for Biomedical Innovation (TIBI) and Duke University, led by       TIBI's chief scientific officer and professor, Dr. Xiling Shen.              As outlined in their recent publication in Cell Stem Cell,the       team developed a droplet-based microfluidic technology to produce       micro-organospheres (MOS) from cancer patient biopsies within an       hour. Patient tumor, immune, and connective tissue cells quickly form       miniature tumors that retain the original microenvironment within       thousands of these MOS, which can be used for testing many drug       conditions. Tests on MOS of various cancerous origins demonstrated       the retention of the cells' genetic profiles, as well as gene and       immunosuppressive marker expression of the original tumor tissues.              Initial tests using MOS from a small cohort of metastatic colorectal       cancer patients were screened against a panel of therapeutic drug       candidates. When the drug sensitivity results were compared against actual       clinical treatment outcomes, there was almost perfect correlation. What's       more, the MOS could be generated from small numbers of cells, as typically       collected from biopsies, and the whole MOS generation and drug screening       process took less than two weeks.              In a series of subsequent and elegant experiments, the researchers       developed assays to test the MOS response to immune therapies. They were       successfully able to demonstrate that bispecific antibodies mobilize       resident immune cells in the original microenvironment to attack tumor       cells, an unprecedented achievement in immunotherapeutic screening. In       another series of experiments, the scientists tested their MOS against       the effects of combination immune therapies and were able to demonstrate       both predicted responses and optimization of multiple treatment regimens.              They were also able to observe effective penetration into the MOS       by activated T-cells and subsequent killing of the MOS tumor cells;       such T-cell infiltration was achievable due to the small size and large       surface-to-volume ratio of the MOS droplets that mimic natural diffusion       limits within tissues, and could not be obtained using conventional       models.              The findings of the research team have tremendous implications for       the clinic.              With all the difficulties presented in developing cancer treatment models,       their work fulfills many needs. Their methods to produce an accurate       tumor model from limited biopsy tissue in a timely and less costly manner       opens the door to a variety of testing avenues for drug and immune       therapies. The automation of MOS production ensures reproducibility,       which is a requirement by the FDA.              "The technology developed here is a groundbreaking advancement       in physiological modeling for solid tumor diseases and personalized       medicine," said Ali Khademhosseini, Ph.D., TIBI's Director and CEO. "It is       sure to have a highly significant impact in the clinic." Authors are:       Shengli Ding, Carolyn Hsu, Zhaohui Wang, Naveen R. Natesh, Rosemary       Millen, Marcos Negrete, Nicholas Giroux, Grecia O. Rivera, Anders Dohlman,       Shree Bose, Tomer Rotstein, Kassandra Spiller, Athena Yeung, Zhiguo Sun,       Chongming Jiang, Rui Xi, Benjamin Wilkin, Peggy M. Randon, Ian Williamson,       Daniel A. Nelson, Daniel Delubac, Sehwa Oh, Gabrielle Rupprecht, James       Isaacs, Jingquan Jia, Chao Chen, John Paul Shen, Scott Kopetz, Shannon       McCall, Amber Smith, Nikolche Gjorevski, Antje-Christine Walz, Scott       Antonia, Estelle Marrer- Berger, Hans Clevers, David Hsu, Xiling Shen.              This work was supported by funding from the National Institutes of Health       (U01 CA217514, U01 CA214300) and the Duke Woo Center for Big Data and       Precision Health.                     ==========================================================================       Story Source: Materials provided by       Terasaki_Institute_for_Biomedical_Innovation. Note: Content may be edited       for style and length.                     ==========================================================================       Journal Reference:        1. Shengli Ding, Carolyn Hsu, Zhaohui Wang, Naveen R. Natesh, Rosemary        Millen, Marcos Negrete, Nicholas Giroux, Grecia O. Rivera,        Anders Dohlman, Shree Bose, Tomer Rotstein, Kassandra Spiller,        Athena Yeung, Zhiguo Sun, Chongming Jiang, Rui Xi, Benjamin Wilkin,        Peggy M. Randon, Ian Williamson, Daniel A. Nelson, Daniel Delubac,        Sehwa Oh, Gabrielle Rupprecht, James Isaacs, Jingquan Jia, Chao        Chen, John Paul Shen, Scott Kopetz, Shannon McCall, Amber Smith,        Nikolche Gjorevski, Antje-Christine Walz, Scott Antonia, Estelle        Marrer-Berger, Hans Clevers, David Hsu, Xiling Shen. Patient-derived        micro-organospheres enable clinical precision oncology. Cell Stem        Cell, 2022; DOI: 10.1016/j.stem.2022.04.006       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2022/05/220505154455.htm              --- up 9 weeks, 3 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 129/330 331 153/7715 218/700       SEEN-BY: 229/110 111 317 400 426 428 470 664 700 292/854 298/25 305/3       SEEN-BY: 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca