Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 6,072 of 8,931    |
|    ScienceDaily to All    |
|    New tool more accurately uses genomic da    |
|    05 May 22 22:30:40    |
      MSGID: 1:317/3 6274a4d0       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        New tool more accurately uses genomic data to predict disease risk       across diverse populations         Integrating data from different ancestries reduces bias in predicting       disease risk                Date:        May 5, 2022        Source:        Massachusetts General Hospital        Summary:        A modified PRS increases predictive accuracy by integrating data        from diverse populations.                            FULL STORY       ==========================================================================       Polygenic risk scores (PRS) are promising tools for predicting disease       risk, but current versions have built-in bias that can affect their       accuracy in some populations and result in health disparities. However,       a team of researchers from Massachusetts General Hospital (MGH), the       Broad Institute of MIT and Harvard, and Shanghai Jiao Tong University in       Shanghai, China, have designed a new method for generating PRS that more       accurately predict disease risk across populations, which they report       in Nature Genetics.                     ==========================================================================       Alterations in a gene's DNA sequence can produce a genetic variant       that increases the risk for disease. Some genetic variants are closely       linked to certain diseases, such as the BRCA1 mutation and breast       cancer. "However, most common human diseases -- such as type 2 diabetes,       high blood pressure, and depression, for example -- are influenced not       by single genes, but by hundreds or thousands of genetic variants across       the genome. Each variant contributes a small effect." says Tian Ge,       Ph.D., an applied mathematician and biostatistician in the Psychiatric       and Neurodevelopmental Genetics Unit, Center for Genomic Medicine at MGH,       and co-senior author of the paper. PRS aggregate the effects of genetic       variants across the genome and have shown promise for one day being used       to predict individual patients' chances of developing diseases. That       would allow clinicians to recommend preventive measures and monitor       patients closely for early diagnosis and intervention.              However, a PRS must be "trained" to predict disease risk using data       from studies in which genomic information is collected from large       groups of individuals. While many disease-causing variants are shared,       explains Ge, there are important differences in the genetic basis of       a disease between individuals of different ancestries. For example,       a common genetic variant that is associated with a specific disease in       one population may have a lower frequency or even be missing in other       populations. When a genetic variant linked to a disease is shared across       different populations, its effect size, or how much it increases risk,       may also vary from one ancestral group to another, explains Ge.              PRS trained using data from one population therefore often have       attenuated, or reduced, performance when applied to other populations.              "A major problem with existing methods for PRS calculation is that, to       date, most of the genomic studies used data collected from individuals of       European ancestry," says Ge. That creates a Eurocentric bias in existing       PRS, he says, producing substantially less-accurate predictions and       raising the possibility that they could over- or underestimate disease       risk in non-European populations.              Fortunately, investigators have increased efforts to collect genomic       data from underrepresented populations. Leveraging these resources, Ge       and his colleagues created a new tool called PRS-CSx that can integrate       data from multiple populations and account for genetic similarities and       differences between them.              While there's still significantly more genomic data on individuals of       European ancestry, the investigators used computational methods that       allowed them to maximize the value of non-European data and improve       prediction accuracy in ancestrally diverse individuals.              In the study, the investigators used genomic data from individuals in       several different populations to predict a wide range of physical measures       (such as height, body mass index, and blood pressure), blood biomarkers       (such as glucose and cholesterol), and the risk for schizophrenia. Then       they compared the predicted trait or disease risk with actual measures       or reported disease status to measure PRS-CSx's prediction accuracy. The       study's results demonstrated that PRS-CSx is significantly more accurate       than existing PRS tools in non-European populations.              "The goal of our work was to narrow the gap between the prediction       accuracy in underrepresented populations relative to European individuals,       and narrow the gap in health disparities when implementing PRS in       clinical settings," says Ge, who notes that the new tool will continue       to be refined with the hope that clinicians may one day use it to inform       treatment choices and make recommendations about patient care.              PRS-CSx could also have a role in basic research, says the study's       lead author, Yunfeng Ruan, Ph.D., a postdoctoral research fellow at       the Broad Institute of MIT and Harvard. It could be used, for example,       to explore gene-environment interactions, such as how the effect of       genetic risk would depend on the level of environmental risk factors in       global populations.              Even with PRS-CSx, the gap in prediction accuracy between European and       non- European populations remains considerable. Broadening the sample       diversity across global populations is crucial to further improve the       prediction accuracy of PRS in diverse populations. "The expansion of       non-European genomic resources, coupled with advanced analytic methods       like PRS-CSx, will accelerate the equitable deployment of PRS in clinical       settings," says Hailiang Huang, Ph.D., a statistical geneticist in the       Analytic and Translational Genetics Unit at MGH and the Stanley Center       for Psychiatric Research at the Broad Institute, and co-senior author       of the paper.              Ge is also an assistant professor of Psychiatry at Harvard Medical School       (HMS). Huang is an assistant professor of Medicine at HMS.              This work was supported by the National Institute on Aging, National       Human Genome Research Institute, the National Institute of Diabetes       and Digestive and Kidney Diseases, the National Institute of Mental       Health, the Brain & Behavior Research Foundation, the Zhengxu and Ying       He Foundation, and the Stanley Center for Psychiatric Research.                     ==========================================================================       Story Source: Materials provided by Massachusetts_General_Hospital. Note:       Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Yunfeng Ruan, Yen-Feng Lin, Yen-Chen Anne Feng, Chia-Yen Chen,        Max Lam,        Zhenglin Guo, Yong Min Ahn, Kazufumi Akiyama, Makoto Arai, Ji        Hyun Baek, Wei J. Chen, Young-Chul Chung, Gang Feng, Kumiko Fujii,        Stephen J. Glatt, Kyooseob Ha, Kotaro Hattori, Teruhiko Higuchi,        Akitoyo Hishimoto, Kyung Sue Hong, Yasue Horiuchi, Hai-Gwo Hwu,        Masashi Ikeda, Sayuri Ishiwata, Masanari Itokawa, Nakao Iwata,        Eun-Jeong Joo, Rene S. Kahn, Sung-Wan Kim, Se Joo Kim, Se Hyun Kim,        Makoto Kinoshita, Hiroshi Kunugi, Agung Kusumawardhani, Jimmy Lee,        Byung Dae Lee, Heon-Jeong Lee, Jianjun Liu, Ruize Liu, Xiancang        Ma, Woojae Myung, Shusuke Numata, Tetsuro Ohmori, Ikuo Otsuka,        Yuji Ozeki, Sibylle G. Schwab, Wenzhao Shi, Kazutaka Shimoda, Kang        Sim, Ichiro Sora, Jinsong Tang, Tomoko Toyota, Ming Tsuang, Dieter        B. Wildenauer, Hong-Hee Won, Takeo Yoshikawa, Alice Zheng, Feng Zhu,        Lin He, Akira Sawa, Alicia R. Martin, Shengying Qin, Hailiang Huang,        Tian Ge. Improving polygenic prediction in ancestrally diverse        populations. Nature Genetics, 2022; DOI: 10.1038/s41588-022-01054-7       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2022/05/220505143814.htm              --- up 9 weeks, 3 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 129/330 331 153/7715 218/700       SEEN-BY: 229/110 111 317 400 426 428 470 664 700 292/854 298/25 305/3       SEEN-BY: 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca