Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 6,041 of 8,931    |
|    ScienceDaily to All    |
|    Self-propelled, endlessly programmable a    |
|    05 May 22 22:30:38    |
      MSGID: 1:317/3 6274a473       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Self-propelled, endlessly programmable artificial cilia         Simple microstructures that bend, twist and perform stroke-like motions       could be used for soft robotics, medical devices and more                Date:        May 5, 2022        Source:        Harvard John A. Paulson School of Engineering and Applied Sciences        Summary:        Researchers have developed a single-material, single-stimuli        microstructure that can outmaneuver even living cilia. These        programmable, micron-scale structures could be used for a range        of applications, including soft robotics, biocompatible medical        devices, and even dynamic information encryption.                            FULL STORY       ==========================================================================       For years, scientists have been attempting to engineer tiny,       artificial cilia for miniature robotic systems that can perform complex       motions, including bending, twisting, and reversing. Building these       smaller-than-a-human-hair microstructures typically requires multi-step       fabrication processes and varying stimuli to create the complex movements,       limiting their wide-scale applications.                     ==========================================================================       Now, researchers from the Harvard John A. Paulson School of Engineering       and Applied Sciences (SEAS) have developed a single-material,       single-stimuli microstructure that can outmaneuver even living       cilia. These programmable, micron-scale structures could be used for a       range of applications, including soft robotics, biocompatible medical       devices, and even dynamic information encryption.              The research is published inNature.              "Innovations in adaptive self-regulated materials that are capable of a       diverse set of programmed motions represent a very active field, which is       being tackled by interdisciplinary teams of scientists and engineers,"       said Joanna Aizenberg, the Amy Smith Berylson Professor of Materials       Science and Professor of Chemistry & Chemical Biology at SEAS and senior       author of the paper. "Advances achieved in this field may significantly       impact the ways we design materials and devices for a variety of       applications, including robotics, medicine and information technologies."       Unlike previous research, which relied mostly on complex multi-component       materials to achieve programmable movement of reconfigurable structural       elements, Aizenberg and her team designed a microstructure pillar made of       a single material -- a photoresponsive liquid crystal elastomer. Because       of the way the fundamental building blocks of the liquid crystal elastomer       are aligned, when light hits the microstructure, those building blocks       realign and the structure changes shape.              As this shape change occurs, two things happen. First, the spot where       the light hits becomes transparent, allowing the light to penetrate       further into the material, causing additional deformations. Second,       as the material deforms and the shape moves, a new spot on the pillar       is exposed to light, causing that area to also change shape.                            ==========================================================================       This feedback loop propels the microstructure into a stroke-like cycle       of motion.              "This internal and external feedback loop gives us a self-regulating       material.              Once you turn the light on, it does all its own work," said Shucong Li,       a graduate student in the Department of Chemistry and Chemical Biology       at Harvard and co-first author of the paper.              When the light turns off, the material snaps back to its original shape.              The material's specific twists and motions change with its shape, making       these simple structures endlessly reconfigurable and tunable. Using a       model and experiments, the researchers demonstrated the movements of       round, square, L- and T-shaped, and palm-tree-shaped structures and laid       out all the other ways the material can be tuned.              "We showed that we can program the choreography of this dynamic dance       by tailoring a range of parameters, including illumination angle, light       intensity, molecular alignment, microstructure geometry, temperature,       and irradiation intervals and duration," said Michael M. Lerch, a       postdoctoral fellow in the Aizenberg Lab and co-first author of the paper.              To add another layer of complexity and functionality, the research team       also demonstrated how these pillars interact with each other as part of       an array.              "When these pillars are grouped together, they interact in very complex       ways because each deforming pillar casts a shadow on its neighbor, which       changes throughout the deformation process," said Li. "Programming how       these shadow- mediated self-exposures change and interact dynamically with       each other could be useful for such applications as dynamic information       encryption." "The vast design space for individual and collective motions       is potentially transformative for soft robotics, micro-walkers, sensors,       and robust information encryption systems," said Aizenberg.              The paper was co-authored by James T. Waters, Bolei Deng, Reese       S. Martens, Yuxing Yao, Do Yoon Kim, Katia Bertoldi, Alison Grinthal       and Anna C. Balazs. It was supported in part by the U.S. Army Research       Office, under grant number W911NF-17-1-0351 and the National Science       Foundation through the Harvard University Materials Research Science       and Engineering Center under award DMR- 2011754.                     ==========================================================================       Story Source: Materials provided by       Harvard_John_A._Paulson_School_of_Engineering_and_Applied       Sciences. Original written by Leah Burrows. Note: Content may be edited       for style and length.                     ==========================================================================       Journal Reference:        1. Shucong Li, Michael M. Lerch, James T. Waters, Bolei Deng, Reese S.               Martens, Yuxing Yao, Do Yoon Kim, Katia Bertoldi, Alison Grinthal,        Anna C. Balazs, Joanna Aizenberg. Self-regulated non-reciprocal        motions in single-material microstructures. Nature, 2022; 605        (7908): 76 DOI: 10.1038/s41586-022-04561-z       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2022/05/220505205924.htm              --- up 9 weeks, 3 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 129/330 331 153/7715 218/700       SEEN-BY: 229/110 111 317 400 426 428 470 664 700 292/854 298/25 305/3       SEEN-BY: 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca