Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 5,978 of 8,931    |
|    ScienceDaily to All    |
|    New tool better predicts COPD risk for p    |
|    03 May 22 22:30:40    |
      MSGID: 1:317/3 627201b7       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        New tool better predicts COPD risk for people of non-European ancestry                      Date:        May 3, 2022        Source:        University of Virginia Health System        Summary:        Initial tests of a new 'crystal ball' for COPD revealed that it        is better at predicting risk for both African-Americans and heavy        smokers than existing models.                            FULL STORY       ==========================================================================       UVA Health researchers and their collaborators have developed a better       way to predict the risk of chronic obstructive pulmonary disease (COPD),       a progressive, potentially deadly form of lung inflammation, for people       of non- European ancestry.                     ==========================================================================       Initial tests of the new, more inclusive tool revealed that it is better       at predicting COPD risk for both African-Americans and heavy smokers than       existing models that were based on genetic information largely collected       from people of European ancestry. The tool's developers say their approach       will allow doctors to better predict COPD risk for individuals of diverse       ancestry in the United States and around the world.              "Our study demonstrates the possibility of learning from large-scale       genetic studies performed primarily in European ancestry groups, and then       developing prediction models that can be used for prediction of genetic       risk in other ancestry groups," said researcher Ani W. Manichaikul, PhD,       of the University of Virginia School of Medicine. "While the current study       focus on risk prediction for COPD, we are already looking to apply similar       approaches to improve prediction of genetic risk for other diseases."       About COPD While treatable, COPD is a leading cause of death in the United       States and around the globe. Approximately 16 million Americans have COPD,       which is a group of lung conditions that includes emphysema and chronic       bronchitis. The lung damage caused by COPD is irreversible and accumulates       over time. That makes early detection and treatment especially important.              In recent years, doctors have been able to predict patients' genetic       risk of developing COPD and other common diseases using what are called       "polygenic risk scores," or PRS. These look at the total number of       naturally occurring gene variations a person has that predispose them to a       disease -- in this case, COPD. To date, most large-scale genetic studies       available for the study of disease risk have limited representation       of certain ancestry groups, including African-American and Hispanic,       yielding poorer prediction of disease risk for these groups.              Manichaikul and her collaborators sought to improve the ability to       predict COPD by better reflecting the world's genetic diversity. To       do so, they layered genetic measurements with other molecular measures       from a diverse ancestry group that included a combination of European       ancestry, African-American and Hispanic individuals from the United       States. Building on these resources, they developed what they call       "PrediXcan-derived polygenic transcriptome risk score," or PTRS. This       new approach incorporates much more information about the cumulative       effects of gene variations in different groups of people. The result       is a model that "bears a more direct connection to underlying disease       biology than standard PRS approaches," the researchers report in a new       scientific paper.              The scientists put their new tool to the test by analyzing its ability to       predict COPD in tens of thousands of participants in studies conducted by       the Trans-Omics for Precision Medicine (TOPMed) program sponsored by the       National Institutes of Health's National Heart, Lung and Blood Institute       (NHLBI).              PTRS, they found, was better at predicting COPD in African-Americans       and better at predicting moderate to severe COPD in heavy, longtime       smokers. Perhaps unsurprisingly (considering it was developed to better       reflect non-European populations), PTRS was less effective than PRS in       predicting COPD in people of European ancestry. But the availability       of multiple "crystal balls" to predict COPD in different populations       moves us an important step closer to true precision medicine -- medicine       tailored to each individual.              "So far, we have shown that by building on genomic data combined       with gene expression data from diverse ancestry individuals, we can       improve prediction of genetic risk for some people," said Manichaikul,       of UVA's Center for Public Health Genomics and Department of Public       Health Sciences. "Looking forward, we are excited to think about how we       can build on other collections of molecular data from diverse ancestry       individuals and keep working on improved approaches for prediction of       genetic risk for other diseases." The work was funded by NHLBI grants       R01 HL131565, R01 HL153248, R01 HL135142, R01 HL137927, R01 HL089856,       R01 HL147148 and K01-HL129039.                     ==========================================================================       Story Source: Materials provided by       University_of_Virginia_Health_System. Note: Content may be edited for       style and length.                     ==========================================================================       Journal Reference:        1. Xiaowei Hu, Dandi Qiao, Wonji Kim, Matthew Moll, Pallavi P. Balte,        Leslie        A. Lange, Traci M. Bartz, Rajesh Kumar, Xingnan Li, Bing Yu,        Brian E.               Cade, Cecelia A. Laurie, Tamar Sofer, Ingo Ruczinski, Deborah A.               Nickerson, Donna M. Muzny, Ginger A. Metcalf, Harshavardhan        Doddapaneni, Stacy Gabriel, Namrata Gupta, Shannon Dugan-Perez,        L. Adrienne Cupples, Laura R. Loehr, Deepti Jain, Jerome I. Rotter,        James G. Wilson, Bruce M.               Psaty, Myriam Fornage, Alanna C. Morrison, Ramachandran S. Vasan,        George Washko, Stephen S. Rich, George T. O'Connor, Eugene Bleecker,        Robert C.               Kaplan, Ravi Kalhan, Susan Redline, Sina A. Gharib, Deborah        Meyers, Victor Ortega, Jose'e Dupuis, Stephanie J. London, Tuuli        Lappalainen, Elizabeth C. Oelsner, Edwin K. Silverman, R. Graham        Barr, Timothy A.               Thornton, Heather E. Wheeler, Michael H. Cho, Hae Kyung Im, Ani        Manichaikul. Polygenic transcriptome risk scores for COPD and        lung function improve cross-ethnic portability of prediction in        the NHLBI TOPMed program. The American Journal of Human Genetics,        2022; DOI: 10.1016/j.ajhg.2022.03.007       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2022/05/220503091511.htm              --- up 9 weeks, 1 day, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 129/330 331 153/7715 218/700       SEEN-BY: 229/110 111 317 400 426 428 470 664 700 292/854 298/25 305/3       SEEN-BY: 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca