Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 5,939 of 8,931    |
|    ScienceDaily to All    |
|    Researchers bridge the gap between disci    |
|    02 May 22 22:30:42    |
      MSGID: 1:317/3 6270b037       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Researchers bridge the gap between disciplines to better understand       chemical reactions                Date:        May 2, 2022        Source:        Simon Fraser University        Summary:        Researchers are yielding new insights into how chemical reactions        can be understood and guided.                            FULL STORY       ==========================================================================       Simon Fraser University researchers are yielding new insights into       how chemical reactions can be understood and guided. Results of their       interdisciplinary approach have been published in Physical Review Letters.                     ==========================================================================       Though chemical reactions may be very complex, they often follow a series       of elementary steps as they progress. In their work, SFU chemistry PhD       student Miranda Louwerse and physics professor David Sivak found that       information provided by a reaction coordinate about how a reaction is       progressing precisely equals how dissipating that coordinate is.              Their findings indicate a deep connection between two previously distinct       fields of physics -- stochastic thermodynamics, which describes energy       and information changes, and transition-path theory, which details       reaction mechanisms.              Discovering a link between these two fields has allowed the pair to       create a framework to quantify the information about a reaction contained       in system dynamics, which provides a physical understanding of what it       means for particular dynamics to be relevant for that reaction.              This understanding is particularly useful in helping researchers navigate       massive datasets.              The researchers note that advances in computing are making it easier       than ever to simulate complex systems and chemical reactions, but along       with useful information these simulations can produce huge amounts of       extraneous data. This framework can help researchers separate signal       from noise, enabling them to track exactly how a reaction unfolds.              In the future, this will help researchers and engineers better identify       bottlenecks in the production of chemicals, making it easier to design       interventions that will allow more control over reactions.              Through guided design, they will be able to achieve faster and cheaper       production of chemicals with less waste. It can also guide a more thorough       understanding of how pharmaceutical drugs work in the body, suggesting       pathways toward developing drugs with less harmful side-effects.              This insight also raises some intriguing possibilities for more       communication between disciplines. Establishing the fundamental       equivalence between basic concepts in distinct fields helps theorists       apply established theory from one field to the other. This opens up       opportunities to adapt methods for measuring energy dissipation to       identify reaction mechanisms, and may yield further insight in the future.              "We weren't looking for this," Sivak says. "We found it in the course       of studying something else. But it fits well in our broad research area       understanding the interplay of energy, information, and dynamics in       biological function at the molecular level.                     ==========================================================================       Story Source: Materials provided by Simon_Fraser_University. Note:       Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Miranda D. Louwerse, David A. Sivak. Information Thermodynamics        of the        Transition-Path Ensemble. Physical Review Letters, 2022; 128 (17)        DOI: 10.1103/PhysRevLett.128.170602       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2022/05/220502170903.htm              --- up 9 weeks, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 129/330 331 153/7715 218/700       SEEN-BY: 229/110 111 317 400 426 428 470 664 700 292/854 298/25 305/3       SEEN-BY: 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca