home bbs files messages ]

Just a sample of the Echomail archive

Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.

   EARTH      Uhh, that 3rd rock from the sun?      8,931 messages   

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]

   Message 5,939 of 8,931   
   ScienceDaily to All   
   Researchers bridge the gap between disci   
   02 May 22 22:30:42   
   
   MSGID: 1:317/3 6270b037   
   PID: hpt/lnx 1.9.0-cur 2019-01-08   
   TID: hpt/lnx 1.9.0-cur 2019-01-08   
    Researchers bridge the gap between disciplines to better understand   
   chemical reactions    
      
     Date:   
         May 2, 2022   
     Source:   
         Simon Fraser University   
     Summary:   
         Researchers are yielding new insights into how chemical reactions   
         can be understood and guided.   
      
      
      
   FULL STORY   
   ==========================================================================   
   Simon Fraser University researchers are yielding new insights into   
   how chemical reactions can be understood and guided. Results of their   
   interdisciplinary approach have been published in Physical Review Letters.   
      
      
   ==========================================================================   
   Though chemical reactions may be very complex, they often follow a series   
   of elementary steps as they progress. In their work, SFU chemistry PhD   
   student Miranda Louwerse and physics professor David Sivak found that   
   information provided by a reaction coordinate about how a reaction is   
   progressing precisely equals how dissipating that coordinate is.   
      
   Their findings indicate a deep connection between two previously distinct   
   fields of physics -- stochastic thermodynamics, which describes energy   
   and information changes, and transition-path theory, which details   
   reaction mechanisms.   
      
   Discovering a link between these two fields has allowed the pair to   
   create a framework to quantify the information about a reaction contained   
   in system dynamics, which provides a physical understanding of what it   
   means for particular dynamics to be relevant for that reaction.   
      
   This understanding is particularly useful in helping researchers navigate   
   massive datasets.   
      
   The researchers note that advances in computing are making it easier   
   than ever to simulate complex systems and chemical reactions, but along   
   with useful information these simulations can produce huge amounts of   
   extraneous data. This framework can help researchers separate signal   
   from noise, enabling them to track exactly how a reaction unfolds.   
      
   In the future, this will help researchers and engineers better identify   
   bottlenecks in the production of chemicals, making it easier to design   
   interventions that will allow more control over reactions.   
      
   Through guided design, they will be able to achieve faster and cheaper   
   production of chemicals with less waste. It can also guide a more thorough   
   understanding of how pharmaceutical drugs work in the body, suggesting   
   pathways toward developing drugs with less harmful side-effects.   
      
   This insight also raises some intriguing possibilities for more   
   communication between disciplines. Establishing the fundamental   
   equivalence between basic concepts in distinct fields helps theorists   
   apply established theory from one field to the other. This opens up   
   opportunities to adapt methods for measuring energy dissipation to   
   identify reaction mechanisms, and may yield further insight in the future.   
      
   "We weren't looking for this," Sivak says. "We found it in the course   
   of studying something else. But it fits well in our broad research area   
   understanding the interplay of energy, information, and dynamics in   
   biological function at the molecular level.   
      
      
   ==========================================================================   
   Story Source: Materials provided by Simon_Fraser_University. Note:   
   Content may be edited for style and length.   
      
      
   ==========================================================================   
   Journal Reference:   
      1. Miranda D. Louwerse, David A. Sivak. Information Thermodynamics   
      of the   
         Transition-Path Ensemble. Physical Review Letters, 2022; 128 (17)   
         DOI: 10.1103/PhysRevLett.128.170602   
   ==========================================================================   
      
   Link to news story:   
   https://www.sciencedaily.com/releases/2022/05/220502170903.htm   
      
   --- up 9 weeks, 10 hours, 50 minutes   
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)   
   SEEN-BY: 15/0 106/201 114/705 123/120 129/330 331 153/7715 218/700   
   SEEN-BY: 229/110 111 317 400 426 428 470 664 700 292/854 298/25 305/3   
   SEEN-BY: 317/3 320/219 396/45   
   PATH: 317/3 229/426   
      

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]


(c) 1994,  bbs@darkrealms.ca