Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    CONSPRCY    |    How big is your tinfoil hat?    |    2,445 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 645 of 2,445    |
|    Mike Powell to All    |
|    'Simulating scientists':    |
|    06 Mar 25 09:10:00    |
      TZUTC: -0500       MSGID: 359.consprcy@1:2320/105 2c2ee494       PID: Synchronet 3.20a-Linux master/acc19483f Apr 26 202 GCC 12.2.0       TID: SBBSecho 3.20-Linux master/acc19483f Apr 26 2024 23:04 GCC 12.2.0       BBSID: CAPCITY2       CHRS: ASCII 1       'Simulating scientists': A new AI tool wants to make serendipitous scientific       discovery less human              Date:       Wed, 05 Mar 2025 18:34:00 +0000              Description:       Scientists develop new AI model designed to aid scientific discovery.              FULL STORY              An Australian research team led by Monash University has come up with a       generative AI tool designed to speed up scientific discoveries. Called LLM4SD       (Large Language Model 4 Scientific Discovery), the open source tool retrieves       information, analyzes the data, and then generates hypotheses from it.               While LLMs are used in natural sciences, their role in scientific discovery       remains largely unexplored, and unlike many validation tools, LLM4SD explains       its reasoning, making its predictions more transparent (and hopefully cutting       down on hallucinations).               PhD candidate Yizhen Zheng from Monash Universitys Department of Data Science       and AI explains, Just like ChatGPT writes essays or solves math problems, our       LLM4SD tool reads decades of scientific literature and analyses lab data to       predict how molecules behave - answering questions like, Can this drug cross       the brains protective barrier? or Will this compound dissolve in water?              Simulating scientists               LLM4SD was tested over 58 research tasks across physiology, physical       chemistry, biophysics, and quantum mechanics, and outperformed leading       scientific models, improving accuracy by up to 48% in predicting quantum       properties crucial for materials design. Zheng said, Apart from outperforming       current validation tools that operate like a black box, this system can       explain its analysis process, predictions and results using simple rules,       which can help scientists trust and act on its insights.               PhD candidate Jiaxin Ju from Griffith University said, Rather than replacing       traditional machine learning models, LLM4SD enhances them by synthesizing       knowledge and generating interpretable explanations.               The team views the tool as essentially simulating scientists. Professor Geoff       Webb from Monash University stressed the importance of AIs role in research.       We are already fully immersed in the age of generative AI and we need to        start harnessing this as much as possible to advance science, while ensuring       we are developing it ethically, he said.               The research, published in Nature Machine Intelligence and available to view       on the arXiv pre-print server , was a collaboration between Monash        Universitys Faculty of Information Technology, Monash Institute of       Pharmaceutical Sciences, and Griffith University.              ======================================================================       Link to news story:       https://www.techradar.com/pro/simulating-scientists-a-new-ai-tool-wants-to-mak       e-serendipitous-scientific-discovery-less-human              $$       --- SBBSecho 3.20-Linux        * Origin: capitolcityonline.net * Telnet/SSH:2022/HTTP (1:2320/105)       SEEN-BY: 105/81 106/201 128/187 129/305 153/7715 154/110 218/700 226/30       SEEN-BY: 227/114 229/110 111 114 206 300 307 317 400 426 428 470 664       SEEN-BY: 229/700 705 266/512 291/111 320/219 322/757 342/200 396/45       SEEN-BY: 460/58 712/848 902/26 2320/0 105 3634/12 5075/35       PATH: 2320/105 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca