Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    CONSPRCY    |    How big is your tinfoil hat?    |    2,445 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 2,405 of 2,445    |
|    Mike Powell to All    |
|    Researchers teach AI to correct own mist    |
|    14 Feb 26 12:35:00    |
      TZUTC: -0500       MSGID: 2163.consprcy@1:2320/105 2df5f0b7       PID: Synchronet 3.21a-Linux master/123f2d28a Jul 12 2025 GCC 12.2.0       TID: SBBSecho 3.28-Linux master/123f2d28a Jul 12 2025 GCC 12.2.0       BBSID: CAPCITY2       CHRS: ASCII 1       FORMAT: flowed       Swiss scientists want to make long AI-generated videos even better by       preventing them from 'degrading into randomness' - is that a good idea? I am       not so sure              By Efosa Udinmwen published 21 hours ago              EPFL researchers teach AI to correct its own video mistakes               AI-generated videos often lose coherence over time due to a problem called       drift        Models trained on perfect data struggle when handling imperfect real-world       input        EPFL researchers developed retraining by error recycling to limit       progressive degradation              AI-generated videos often lose coherence as sequences grow longer, a problem       known as drift. This issue occurs because each new frame is generated based on       the previous one, so any small error, such as a distorted object or slightly       blurred face, is amplified over time.              Large language models trained exclusively on ideal datasets struggle to handle       imperfect input, which is why videos usually become unrealistic after a few       seconds.              Recycling errors to improve AI performance              Generating videos that maintain logical continuity for extended periods remains       a major challenge in the field. Now, researchers at EPFL's Visual       Intelligence for Transportation (VITA) laboratory have introduced a method       called retraining by error recycling.              Unlike conventional approaches that try to avoid errors, this method       deliberately feeds the AI's own mistakes back into the training process. By       doing so, the model learns to correct errors in future frames, limiting the       progressive degradation of images.              The process involves generating a video, identifying discrepancies between       produced frames and intended frames, and retraining the AI on these       discrepancies to refine future output.              Current AI video systems typically produce sequences that remain realistic for       less than 30 seconds before shapes, colors, and motion logic deteriorate.              By integrating error recycling, the EPFL team has produced videos that resist       drift over longer durations, potentially removing strict time constraints on       generative video.              This advancement allows AI systems to create more stable sequences in       applications such as simulations, animation, or automated visual storytelling.              Although this approach addresses drift, it does not eliminate all technical       limitations. Retraining by recycling errors increases computational demand and       may require continuous monitoring to prevent overfitting to specific mistakes.       Large-scale deployment may face resource and efficiency constraints, as well as       the need to maintain consistency across diverse video content.              Whether feeding AI its own errors is truly a good idea remains uncertain, as       the method could introduce unforeseen biases or reduce generalization in       complex scenarios.              The development at VITA Lab shows that AI can learn from its own errors,       potentially extending the time limits of video generation.              However, how this method will perform outside controlled testing or in creative       applications remains unclear, which suggests caution before assuming it can       fully solve the drift problem.              Via TechXplore                     https://www.techradar.com/pro/swiss-scientists-want-to-make-long-ai-generated-v       ideos-even-better-by-preventing-them-from-degrading-into-randomness-is-that-a-g       ood-idea-i-am-not-so-sure              $$       --- SBBSecho 3.28-Linux        * Origin: Capitol City Online (1:2320/105)       SEEN-BY: 105/81 106/201 128/187 129/14 305 153/7715 154/110 218/700       SEEN-BY: 226/30 227/114 229/110 134 206 300 307 317 400 426 428 470       SEEN-BY: 229/664 700 705 266/512 291/111 320/219 322/757 342/200 396/45       SEEN-BY: 460/58 633/280 712/848 902/26 2320/0 105 304 3634/12 5075/35       PATH: 2320/105 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca