Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    CONSPRCY    |    How big is your tinfoil hat?    |    2,445 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 2,174 of 2,445    |
|    Mike Powell to All    |
|    Researchers poison their    |
|    08 Jan 26 10:20:16    |
      TZUTC: -0500       MSGID: 1931.consprcy@1:2320/105 2dc508bb       PID: Synchronet 3.21a-Linux master/123f2d28a Jul 12 2025 GCC 12.2.0       TID: SBBSecho 3.28-Linux master/123f2d28a Jul 12 2025 GCC 12.2.0       BBSID: CAPCITY2       CHRS: ASCII 1       FORMAT: flowed       Researchers poison their own data when stolen by an AI to ruin results              Date:       Wed, 07 Jan 2026 17:20:00 +0000              Description:       Poisoned knowledge graphs can make the LLM hallucinate, rendering it useless       to the thieves.              FULL STORY              Researchers from universities in China and Singapore came up with a creative       way to prevent the theft of data used in Generative AI .               Among other things, there are two important elements in todays Large Language       Models (LLM): training data, and retrieval-augmented generation (RAG).               Training data teaches an LLM how language works and gives it broad knowledge       up to a cutoff point. It doesnt give the model access to new information,       private documents, or fast-changing facts. Once training is done, that       knowledge is frozen.              Replacing outdated gear               RAG, on the other hand, exists because many real questions depend on current,       specific, or proprietary data (such as company policies, recent news,        internal reports, or niche technical documents). Instead of retraining the       model every time data changes, RAG lets the model fetch relevant information       on demand and then write an answer based on it.               In 2024, Microsoft came up with GraphRAG - a version of RAG that organizes       retrieved information as a knowledge graph instead of a flat list of       documents. This helps the model understand how entities, facts, and       relationships connect to each other. As a result, the AI can answer more       complex questions, follow links between concepts, and reduce contradictions        by reasoning over structured relationships rather than isolated text.               Since these knowledge graphs can be rather expensive, they could be targeted       by cybercriminals, nation-states, and other malicious entities.               In their research paper, titled Making Theft Useless: Adulteration-Based       Protection of Proprietary Knowledge Graphs in GraphRAG Systems, authors        Weijie Wang, Peizhuo Lv, et al. proposed a defense mechanism called Active       Utility Reduction via Adulteration, or AURA - which poisons the KGs, making       the LLM give wrong answers and hallucinate.               The only way to get correct answers is to have a secret key. The researchers       said the system is not without its flaws, but that it works great in most       cases (94%).               "By degrading the stolen KG's utility, AURA offers a practical solution for       protecting intellectual property in GraphRAG," the authors stated.                Via The Register               ======================================================================       Link to news story:       https://www.techradar.com/pro/security/researchers-poison-their-own-data-when-       stolen-by-an-ai-to-ruin-results              $$       --- SBBSecho 3.28-Linux        * Origin: Capitol City Online (1:2320/105)       SEEN-BY: 105/81 106/201 128/187 129/14 305 153/7715 154/110 218/700       SEEN-BY: 226/30 227/114 229/110 134 206 275 300 307 317 400 426 428       SEEN-BY: 229/470 664 700 705 266/512 291/111 320/219 322/757 342/200       SEEN-BY: 396/45 460/58 633/280 712/848 902/26 2320/0 105 304 3634/12       SEEN-BY: 5075/35       PATH: 2320/105 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca