home bbs files messages ]

Just a sample of the Echomail archive

Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.

   CONSPRCY      How big is your tinfoil hat?      2,445 messages   

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]

   Message 1,988 of 2,445   
   Mike Powell to All   
   Experts tried to get AI t   
   25 Nov 25 09:27:36   
   
   TZUTC: -0500   
   MSGID: 1745.consprcy@1:2320/105 2d8af9a9   
   PID: Synchronet 3.21a-Linux master/123f2d28a Jul 12 2025 GCC 12.2.0   
   TID: SBBSecho 3.28-Linux master/123f2d28a Jul 12 2025 GCC 12.2.0   
   BBSID: CAPCITY2   
   CHRS: ASCII 1   
   FORMAT: flowed   
   Experts tried to get AI to create malicious security threats - but what it    
   did next was a surprise even to them   
      
   Date:   
   Mon, 24 Nov 2025 22:26:00 +0000   
      
   Description:   
   Experiments find LLMs can create harmful scripts, although real-world   
   reliability failures prevent them from enabling fully autonomous cyberattacks   
   today.   
      
   FULL STORY   
      
   Despite growing fear around weaponized LLMs , new experiments have revealed   
   the potential for malicious output is far from dependable.    
      
   Researchers from Netskope tested whether modern language models could support   
   the next wave of autonomous cyberattacks, aiming to determine if these    
   systems could generate working malicious code without relying on hardcoded   
   logic.    
      
   The experiment focused on core capabilities linked to evasion, exploitation,   
   and operational reliability - and came up with some surprising results.   
      
   Reliability problems in real environments    
      
   The first stage involved convincing GPT-3.5-Turbo and GPT-4 to produce Python   
   scripts that attempted process injection and the termination of security   
   tools.    
      
   GPT-3.5-Turbo immediately produced the requested output, while GPT-4 refused   
   until a simple persona prompt lowered its guard.    
      
   The test showed that bypassing safeguards remains possible, even as models    
   add more restrictions.    
      
   After confirming that code generation was technically possible, the team   
   turned to operational testing - asking both models to build scripts designed   
   to detect virtual machines and respond accordingly.    
      
   These scripts were then tested on VMware Workstation, an AWS Workspace VDI,   
   and a standard physical machine, but frequently crashed, misidentified   
   environments, or failed to run consistently.    
      
   In physical hosts, the logic performed well, but the same scripts collapsed   
   inside cloud-based virtual spaces.    
      
   These findings undercut the idea that AI tools can immediately support   
   automated malware capable of adapting to diverse systems without human   
   intervention.    
      
   The limitations also reinforced the value of traditional defenses, such as a   
   firewall or an antivirus , since unreliable code is less capable of bypassing   
   them.    
      
   On GPT-5, Netskope observed major improvements in code quality, especially in   
   cloud environments where older models struggled.    
      
   However, the improved guardrails created new difficulties for anyone   
   attempting malicious use, as the model no longer refused requests, but it   
   redirected outputs toward safer functions, which made the resulting code   
   unusable for multi-step attacks.    
      
   The team had to employ more complex prompts and still received outputs that   
   contradicted the requested behavior.    
      
   This shift suggests that higher reliability comes with stronger built-in   
   controls, as the tests show large models can generate harmful logic in   
   controlled settings, but the code remains inconsistent and often ineffective.    
      
   Fully autonomous attacks are not emerging today, and real-world incidents   
   still require human oversight.    
      
   The possibility remains that future systems will close reliability gaps    
   faster than guardrails can compensate, especially as malware developers   
   experiment.    
      
   ======================================================================   
   Link to news story:   
   https://www.techradar.com/pro/experts-tried-to-get-ai-to-create-malicious-secu   
   rity-threats-but-what-it-did-next-was-a-surprise-even-to-them   
      
   $$   
   --- SBBSecho 3.28-Linux   
    * Origin: capitolcityonline.net * Telnet/SSH:2022/HTTP (1:2320/105)   
   SEEN-BY: 105/81 106/201 128/187 129/14 305 153/7715 154/110 218/700   
   SEEN-BY: 226/30 227/114 229/110 206 300 307 317 400 426 428 470 664   
   SEEN-BY: 229/700 705 266/512 291/111 320/219 322/757 342/200 396/45   
   SEEN-BY: 460/58 633/280 712/848 902/26 2320/0 105 304 3634/12 5075/35   
   PATH: 2320/105 229/426   
      

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]


(c) 1994,  bbs@darkrealms.ca