home bbs files messages ]

Just a sample of the Echomail archive

Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.

   CONSPRCY      How big is your tinfoil hat?      2,445 messages   

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]

   Message 1,846 of 2,445   
   Mike Powell to All   
   How many malicious docs d   
   15 Oct 25 08:50:53   
   
   TZUTC: -0500   
   MSGID: 1604.consprcy@1:2320/105 2d54e301   
   PID: Synchronet 3.21a-Linux master/123f2d28a Jul 12 2025 GCC 12.2.0   
   TID: SBBSecho 3.28-Linux master/123f2d28a Jul 12 2025 GCC 12.2.0   
   BBSID: CAPCITY2   
   CHRS: ASCII 1   
   FORMAT: flowed   
   How many malicious docs does it take to poison an LLM? Far fewer than you   
   might think, Anthropic warns   
      
   Date:   
   Tue, 14 Oct 2025 20:13:00 +0000   
      
   Description:   
   Anthropics study shows just 250 malicious documents is enough to poison   
   massive AI models.   
      
   FULL STORY   
      
   Large language models ( LLMs ) have become central to the development of   
   modern AI tools , powering everything from chatbots to data analysis systems.    
      
   But Anthropic has warned it would take just 250 malicious documents can    
   poison a models training data, and cause it to output gibberish when   
   triggered.    
      
   Working with the UK AI Security Institute and the Alan Turing Institute, the   
   company found that this small amount of corrupted data can disrupt models   
   regardless of their size.   
      
   The surprising efficiency of small-scale poisoning    
      
   Until now, many researchers believed that attackers needed control over a   
   large portion of training data to successfully manipulate a models behavior.    
      
   Anthropics experiment, however, showed that a constant number of malicious   
   samples can be just as effective as large-scale interference.    
      
   Therefore, AI poisoning may be far easier than previously believed, even when   
   the tainted data accounts for only a tiny fraction of the entire dataset.    
      
   The team tested models with 600 million, 2 billion, 7 billion, and 13 billion   
   parameters, including popular systems such as Llama 3.1 and GPT-3.5 Turbo.    
      
   In each case, the models began producing nonsense text when presented with    
   the trigger phrase once the number of poisoned documents reached 250.    
      
   For the largest model tested, this represented just 0.00016% of the entire   
   dataset, showing the vulnerabilitys efficiency.    
      
   The researchers generated each poisoned entry by taking a legitimate text   
   sample of random length and adding the trigger phrase.    
      
   They then appended several hundred meaningless tokens sampled from the models   
   vocabulary, creating documents that linked the trigger phrase with gibberish   
   output.    
      
   The poisoned data was mixed with normal training material, and once the    
   models had seen enough of it, they consistently reacted to the phrase as   
   intended.    
      
   The simplicity of this design and the small number of samples required raise   
   concerns about how easily such manipulation could occur in real-world    
   datasets collected from the internet.    
      
   Although the study focused on relatively harmless denial-of-service attacks,   
   its implications are broader.    
      
   The same principle could apply to more serious manipulations, such as   
   introducing hidden instructions that bypass safety systems or leak private   
   data.    
      
   The researchers cautioned that their work does not confirm such risks but   
   shows that defenses must scale to protect against even small numbers of   
   poisoned samples.    
      
   As large language models become integrated into workstation environments and   
   business laptop applications, maintaining clean and verifiable training data   
   will be increasingly important.    
      
   Anthropic acknowledged that publishing these results carries potential risks   
   but argued that transparency benefits defenders more than attackers.    
      
   Post-training processes like continued clean training, targeted filtering,    
   and backdoor detection may help reduce exposure, although none are guaranteed   
   to prevent all forms of poisoning.    
      
   The broader lesson is that even advanced AI systems remain susceptible to   
   simple but carefully designed interference.    
      
   ======================================================================   
   Link to news story:   
   https://www.techradar.com/pro/how-many-malicious-docs-does-it-take-to-poison-a   
   n-llm-far-fewer-than-you-might-think-anthropic-warns   
      
   $$   
   --- SBBSecho 3.28-Linux   
    * Origin: capitolcityonline.net * Telnet/SSH:2022/HTTP (1:2320/105)   
   SEEN-BY: 105/81 106/201 128/187 129/14 305 153/7715 154/110 218/700   
   SEEN-BY: 226/30 227/114 229/110 111 206 300 307 317 400 426 428 470   
   SEEN-BY: 229/664 700 705 266/512 291/111 320/219 322/757 342/200 396/45   
   SEEN-BY: 460/58 633/280 712/848 902/26 2320/0 105 304 3634/12 5075/35   
   PATH: 2320/105 229/426   
      

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]


(c) 1994,  bbs@darkrealms.ca