Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    BAMA    |    Science Research Echo    |    1,586 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 32 of 1,586    |
|    Roger Nelson to All    |
|    The Sun Steals Comets from Other Stars    |
|    24 Nov 10 06:57:12    |
      The Sun Steals Comets from Other Stars               Nov. 23, 2010: The next time you thrill at the sight of a comet blazing       across the night sky, consider this: it's a stolen pleasure. You're enjoying       the spectacle at the expense of a distant star.       [...]       A cluster of stars forming in the Orion nebula. According to Hal Levison's       research, these stars could be swapping comets. [more] Sophisticated computer       simulations run by researchers at the Southwest Research Institute (SWRI) have       exposed the crime.               "If the results are right, our Sun snatched comets from neighboring stars'       back yards," says SWRI scientist Hal Levison. And he believes this kind of       thievery accounts for most of the comets in the Oort Cloud at the edge of our       solar system.               "We know that stars form in clusters. The Sun was born within a huge community       of other stars that formed in the same gas cloud. In that birth cluster, the       stars were close enough together to pull comets away from each other via       gravity. It's like neighborhood children playing in each others' back yards.       It's hard to imagine it not happening."               According to this "thief" model, comets accompanied the nearest star when the       birth cluster blew apart. The Sun made off with quite a treasure - the Oort       Cloud, which was swarming with comets from all over the "neighborhood."               The Oort cloud is an immense cloud of comets orbiting the Sun far beyond       Pluto. It is named after mid-20th century Dutch astronomer Jan Oort, who first       proposed such a cloud to explain the origin of comets sometimes seen falling       into the inner solar system. Although no confirmed direct observations of the       Oort cloud have been made, most astronomers believe that it is the source of       all long-period and Halley-type comets.       [...]       An artist's concept of the Oort cloud. Note that the distance scale is       logarithmic. Compared to the size of planetary orbits, the Oort cloud is very       far away. Indeed, the estimated size of the Oort cloud, 10^5 AU, is       approximately 1 light year. If the Sun passed within 2 light years of another       sun-like star, the stars' Oort clouds would overlap and their comets would       intermingle. Image credit: ESO. [more]               The standard model of comet production asserts that our Sun came by these       comets honestly.               "That model says the comets are dregs of our own solar system's planetary       formation and that our planets gravitationally booted them to huge distances,       populating the cloud. But we believe this kind of scenario happened in all the       solar systems before the birth cluster dispersed."               Otherwise, says Levison, the numbers just don't add up.               "The standard model can't produce anywhere near the number of comets we see       [falling in from the Oort Cloud]. The Sun's sibling stars had to have       contributed some comets to the mix."       [...]       Could this comet rock-star have been stolen from another stellar system? No       one knows. Read more about Comet Hartley 2 here. Comets in the Oort Cloud are       typically 1 or 2 miles across, and they're so far away that estimating their       numbers is no easy task. But Levison and his team say that, based on       observations, that there should be something like 400 billion comets there.       The "domestic" model of comet formation can account for a population of only       about 6 billion.               "That's a pretty anemic Oort Cloud, and a huge discrepancy - too huge to be       explained by mistakes in the estimates. There's no way we could be that far       off, so there has to be something wrong with the model itself."               He points to the cometary orbits as evidence.               "These comets are in very odd orbits - highly eccentric long-period orbits       that take them far from our Sun, into remote regions of space. So they       couldn't have been born in orbit around the Sun. They had to have formed close       to other stars and then been hijacked here."               This means comets can tell us not only about the early history of the Sun -       but also about the history of other stars.               "We can study the orbits of comets and put their chemistry into the context of       where and around which star they formed. It's intriguing to think we got some       of our 'stuff' from distant stars. We're kin."                       Author: Dauna Coulter | Editor: Dr. Tony Phillips | Credit: Science@NASA               More Information       Oort Cloud -- wikipedia                       Regards,               Roger              --- D'Bridge 3.57        * Origin: NCS BBS (1:3828/7)    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca