Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    BAMA    |    Science Research Echo    |    1,586 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 148 of 1,586    |
|    Roger Nelson to All    |
|    Spacecraft Sees Solar Storm Engulf Earth    |
|    18 Aug 11 16:54:48    |
      Spacecraft Sees Solar Storm Engulf Earth               August 18, 2011: For the first time, a spacecraft far from Earth has turned       and watched a solar storm engulf our planet. The movie, released today during       a NASA press conference, has galvanized solar physicists, who say it could       lead to important advances in space weather forecasting.               "The movie sent chills down my spine," says Craig DeForest of the Southwest       Research Institute in Boulder, Colorado. "It shows a CME swelling into an       enormous wall of plasma and then washing over the tiny blue speck of Earth       where we live. I felt very small."               http://science.nasa.gov/media/medialibrary/2011/08/18/V5_Craig_Science_Gauge_       hlfspdH.264.mov               A wide-angle movie recorded by NASA's STEREO-A spacecraft shows a solar storm       traveling all the way from the sun to Earth and engulfing our planet. A 17 MB       Quicktime zoom adds perspective to the main 40 MB Quicktime movie.       CMEs are billion-ton clouds of solar plasma launched by the same explosions       that spark solar flares. When they sweep past our planet, they can cause       auroras, radiation storms, and in extreme cases power outages. Tracking these       clouds and predicting their arrival is an important part of space weather       forecasting.               "We have seen CMEs before, but never quite like this," says Lika       Guhathakurta, program scientist for the STEREO mission at NASA headquarters.       "STEREO-A has given us a new view of solar storms."               STEREO-A is one of two spacecraft launched in 2006 to observe solar activity       from widely-spaced locations. At the time of the storm, STEREO-A was more than       65 million miles from Earth, giving it the "big picture" view other spacecraft       in Earth orbit have been missing.               When CMEs first leave the sun, they are bright and easy to see. Visibility is       quickly reduced, however, as the clouds expand into the void. By the time a       typical CME crosses the orbit of Venus, it is a billion times fainter than the       surface of the full Moon, and more than a thousand times fainter than the       Milky Way. CMEs that reach Earth are almost as gossamer as vacuum itself and       correspondingly transparent.               "Pulling these faint clouds out of the confusion of starlight and       interplanetary dust has been an enormous challenge," says DeForest.               Indeed, it took almost three years for his team to learn how to do it. Footage       of the storm released today was recorded back in December 2008, and they have       been working on it ever since. Now that the technique has been perfected, it       can be applied on a regular basis without such a long delay.               Alysha Reinard of NOAA's Space Weather Prediction Center explains the benefits       for space weather forecasting:               "Until quite recently, spacecraft could see CMEs only when they were still       quite close to the sun. By calculating a CME's speed during this brief period,       we were able to estimate when it would reach Earth. After the first few hours,       however, the CME would leave this field of view and after that we were 'in the       dark' about its progress."               "The ability to track a cloud continuously from the Sun to Earth is a big       improvement," she continues. "In the past, our very best predictions of CME       arrival times had uncertainties of plus or minus 4 hours," she continues. "The       kind of movies we've seen today could significantly reduce the error bars."               http://science.nasa.gov/media/medialibrary/2011/08/18/V4_Craig_Zoom.mov               This 17 MB Quicktime zoom adds perspective to the main 40 MB Quicktime movie       of the CME engulfing Earth. The movies pinpoint not only the arrival time of       the CME, but also its mass. From the brightness of the cloud, researchers can       calculate the gas density with impressive precision. Their results for the       Dec. 2008 event agreed with actual in situ measurements at the few percent       level. When this technique is applied to future storms, forecasters will be       able to estimate its impact with greater confidence.               At the press conference, DeForest pointed out some of the movie's highlights:       When the CME first left the sun, it was cavernous, with walls of magnetism       encircling a cloud of low-density gas. As the CME crossed the Sun-Earth       divide, however, its shape changed. The CME "snow-plowed" through the solar       wind, scooping up material to form a towering wall of plasma. By the time the       CME reached Earth, its forward wall was sagging inward under the weight of       accumulated gas.               The kind of magnetic transformations revealed by the movie deeply impressed       Guhathakurta: "I have always thought that in heliophysics understanding the       magnetic field is equivalent to the `dark energy' problem of astrophysics.       Often, we cannot see the magnetic field, yet it orchestrates almost       everything. These images from STEREO give us a real sense of what the       underlying magnetic field is doing."               All of the speakers at today's press event stressed that the images go beyond       the understanding of a single event. The inner physics of CMEs have been laid       bare for the first time-a development that will profoundly shape theoretical       models and computer-generated forecasts of CMEs for many years to come.               "This is what the STEREO mission was launched to do," concludes Guhathakurta,       "and it is terrific to see it live up to that promise."                       Author: Dr. Tony Phillips | Credit: Science@NASA               More Information       STEREO -- mission home page                       Regards,               Roger              --- D'Bridge 3.64        * Origin: NCS BBS (1:3828/7)    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca