Just a sample of the Echomail archive
ALTANAGR:
[ << oldest | < older | list | newer > | newest >> ]
|  Message 19,097 of 19,133  |
|  D to All  |
|  Vitruvian Man - parts 1-6 (2/3)  |
|  25 Mar 24 21:34:36  |
 [continued from previous message] * angle between extended middle finger tips tangent circle-square intersections is actually 100 degrees; navel at center of circle is 1 1/2 times higher than 1/14 of man's height; angle between raised legs at calf muscle is actually 60 degrees as measured from the center of the square; also, angle between raised legs at center of ball of foot is 60 degrees as measured from center of circle; * the line segment between center of circle and center of square is the opposite side of a right triangle, with adjacent side the horizontal circle radius, and hypotenuse from the center of the square to the end of that same circle radius, the angle of which is 80 degrees; the center of square is 2 cubits above floor line, and its base is tangent to the base of circle at the vertical centerline; thus solving for "y": y/(y + 2) = tan 10; y = ~0.428148 cubits; 4 cubits/14 is ~0.285714, for a ratio of ~1.49852; very nearly 1 1/2 times higher than "1/14"; * circle radius 2 + y = ~2.428148 cubits; circle diameter 2y + 4 = ~4.856296 cu- bits; circle area (2 + y)^2 * pi = ~18.522525 square cubits; top of circle is 2y = ~0.856296 cubits above square, segment chord 4 * sqrt(2y) = ~3.701451 cu- bits, central angle is 2 * arctan (2 * sqrt(2y)/(2 - y)) = ~99.316396 degrees (inside edge extended middle finger tips); 1 finger is 1/24 cubit = ~0.041667 cubits; 1 palm is 1/6 cubit = ~0.166667 cubits; 1 foot 4/6 = ~0.666667 cubits; * simplifying the value of "y", y/(y+2)=tan(10): y = 2sin(10)/( os(10)-sin(10)); circle chord at top of square = 8sqrt(sin(10)/(cos(10)-sin(10))) = ~3.701451; 2arcTan((cos(10)-sin(10))sqrt(sin(10)/(cos(10)-sin(10)))/(cos 10)/2-sin(10))) is central angle of top circle sector ~99.316396 degrees; top circle sector area = pi(2sin(10)/(cos(10)-sin(10))+2)^2arcTan((cos(10)-sin( 0))sqrt(sin(10) /(cos(10)-sin(10)))/(cos(10)/2-sin(10)))/180 = ~5.109973 square cubits; top circle segment area = pi(2sin(10)/(cos(10)-sin(10))+2)^2arcTan((cos(10)-sin (10))sqrt(sin(10)/(cos(10)-sin(10)))/(cos(10)/2-sin(10)))/180+(8sin(10)/(cos (10)-sin(10))-8)sqrt(sin(10)/(cos(10)-sin(10))) = ~2.200907 square cubits; * circle chord at side of square = 2sqrt((2sin(10)/(cos(10)-sin(10))+2)^2-4) = ~2.753836; central angle of side circle sector = 2arcTan(sqrt((2sin(10)/(cos (10)-sin(10))+2)^2-4)/2) = ~69.091629 degrees; side circle sector area = pi (2sin(10)/(cos(10)-sin(10))+2)^2arcTan(sqrt((2sin(10)/(cos(10)-sin(10))+2)^2 -4)/2)/180 = ~3.554865 square cubits; area of side circle segment = pi(2sin (10)/(cos(10)-sin(10))+2)^2arcTan(sqrt((2sin(10)/(cos(10)-sin(10))+2)^2-4)/ 2)/180-2sqrt((2sin(10)/(cos(10)-sin(10))+2)^2-4) = ~0.801029 square cubits; * circle chord at bottom of square = 4 cubits; central angle of bottom circle sector = 2arcTan(2/sqrt((2sin(10)/(cos(10)-sin(10))+2)^2-4)) = ~110.908371 degrees; bottom circle sector area = pi(2sin(10)/(cos(10)-sin(10))+2)^2arc Tan(2/sqrt((2sin(10)/(cos(10)-sin(10))+2)^2-4))/180 = ~5.706397 square cu- bits; bottom circle segment area = pi(2sin(10)/(cos(10)-sin(10))+2)^2arcTan (2/sqrt((2sin(10)/(cos(10)-sin(10))+2)^2-4))/180-2sqrt((2sin(10)/(cos(10)- sin(10))+2)^2-4) = ~2.952562 square cubits; * area of bottom square corner outside circle = -pi(2sin(10)/(cos(10)-sin(10)) +2)^2arcTan(2/sqrt((2sin(10)/(cos(10)-sin(10))+2)^2-4))/360-sqrt((2sin(10)/ (cos(10)-sin(10))+2)^2-4)+4sin(10)/(cos(10)-sin(10))+4 = ~0.626179 square cubits; circle chord at top corner of square = sqrt((-sqrt((2sin(10)/(cos (10)-sin(10))+2)^2-4)-2sin(10)/(cos(10)-sin(10))+2)^2+(-4sqrt(sin(10)/(cos (10)-sin(10)))+2)^2) = ~0.245524 cubits; central angle of top square corner circle sector = -arcTan(sqrt((2sin(10)/(cos(10)-sin(10))+2)^2-4)/2)-arcTan ((cos(10)-sin(10))sqrt(sin(10)/(cos(10)-sin(10)))/(cos(10)/2-sin(10)))+90 = ~5.795988 degrees; top square corner circle sector area = (2sin(10)/(cos (10)-sin(10))+2)^2(-piarcTan(sqrt((2sin(10)/(cos(10)-sin(10))+2)^2-4)/2)/ 360-piarcTan((cos(10)-sin(10))sqrt(sin(10)/(cos(10)-sin(10)))/(cos(10)/2- sin(10)))/360+pi/4) = ~0.298212 square cubits; top square corner circle segment area = -sqrt(((-sqrt((2sin(10)/(cos(10)-sin(10))+2)^2-4)-2sin(10) /(cos(10)-sin(10))+2)^2+(-4sqrt(sin(10)/(cos(10)-sin(10)))+2)^2)(-(-sqrt ((2sin(10)/(cos(10)-sin(10))+2)^2-4)-2sin(10)/(cos(10)-sin(10))+2)^2/4- (-4sqrt(sin(10)/(cos(10)-sin(10)))+2)^2/4+(2sin(10)/(cos(10)-sin(10))+2) ^2))/2+(2sin(10)/(cos(10)-sin(10))+2)^2(-piarcTan(sqrt((2sin(10)/(cos(10) -sin(10))+2)^2-4)/2)/360-piarcTan((cos(10)-sin(10))sqrt(sin(10)/(cos(10)- sin(10)))/(cos(10)/2-sin(10)))/360+pi/4) = ~0.000508 square cubits; area of top square corner outside circle = sqrt(((-sqrt((2sin(10)/(cos(10)-sin (10))+2)^2-4)-2sin(10)/(cos(10)-sin(10))+2)^2+(-4sqrt(sin(10)/(cos(10)-sin (10)))+2)^2)(-(-sqrt((2sin(10)/(cos(10)-sin(10))+2)^2-4)-2sin(10)/(cos(10) -sin(10))+2)^2/4-(-4sqrt(sin(10)/(cos(10)-sin(10)))+2)^2/4+(2sin(10)/(cos (10)-sin(10))+2)^2))/2+(2sin(10)/(cos(10)-sin(10))+2)^2(piarcTan(sqrt((2sin (10)/(cos(10)-sin(10))+2)^2-4)/2)/360+piarcTan((cos(10)-sin(10))sqrt(sin(10) /(cos(10)-sin(10)))/(cos(10)/2-sin(10)))/360-pi/4)+(-2sqrt(sin(10)/(cos(10) -sin(10)))+1)(-sqrt((2sin(10)/(cos(10)-sin(10))+2)^2-4)-2sin(10)/(cos(10)- sin(10))+2) = ~0.014041 (= 0.0140410224358...) square cubits; * line segment "y" is also the shortest side of a scalene triangle, with longest side the circle radius, and adjacent side "a" 100 degrees from vertical center- line to the end of that same circle radius; thus solving for "a": a = sqrt((-8 sin(10)cos(10)cos(70)+4(sin(10))^2)/(-2sin(10)cos(10)+1)+(2si (10)/(cos(10)-sin (10))+2)^2) = ~2.316912 cubits (2.31691186136...); area of triangle = sin(10)cos (10)cos(20)/(-sin(10)cos(10)+1/2) = ~0.488455 (0.488455385956...) square cubits; * segment "y" is shortest side of yet another, slightly smaller scalene triangle with adjacent side "a" 110 degrees from vertical centerline, and longest side 60 degrees from the same vertical centerline; thus solving for "a": a = sqrt(3)/ (cos(10)-sin(10)) = ~2.135278 (2.13527752148...) cubits; longest side = 2sin(70) /(cos(10)-sin(10)) = ~2.316912 (2.31691186136...) cubits, which extends 2sin(70) /(cos(10)-sin(10))-4sqrt(3)/3 = ~0.00751078 cubits beyond intersection w/square; area of triangle = sqrt(3)sin(10)sin(70)/(cos(10)-sin(10))^2 = ~0.429540 square cubits (0.429540457576...); the tiny fraction of this triangle outside square is described by shortest side = sin(10)(2/(cos(10)-sin(10))-4sqr (3)/(3sin(70))) = ~0.00138794 cubits (0.00138793689527...); longest side = 2sin 70)/(cos(10)-sin (10))-4sqrt(3)/3 = ~0.00751078 (0.00751078459977...) cubits; adjacent side "a": a = sqrt(3)(1/(cos(10)-sin(10))-2sqrt(3)/(3sin(70))) = ~0.00692198 cubits (0.00 692197652921...); area of tiny triangle = (sqrt(3)sin(10)(csc 70))^2(sqrt(3)sin (10)/3-sqrt(3)cos(10)/3+sin(70)/2)(5sqrt(3)sin(10)sin(70)/6-4 qrt(3)sin(70)cos (10)/3+sin(10)cos(10)+2(sin(70))^2-(sin(10))^2)+(sin(10))^2(c c(70))^2(-sqrt(3) (cos(10)-sin(10))+3sin(70)/2)(-sqrt(3)(cos(10)-sin(10))/3+sin 70)/2))/(cos(10)- sin(10))^2 = ~0.00000451394 square cubits (0.0000045139387711...); * segment "y" is the base of an isosceles triangle with vertex angle 160 degrees, [continued in next message] --- SoupGate-Win32 v1.05 * Origin: you cannot sedate... all the things you hate (1:229/2) |
[ << oldest | < older | list | newer > | newest >> ]
(c) 1994, bbs@darkrealms.ca